RISK-BASED DISPOSAL APPLICATION

FORMER DIE CAST AREA 666 EAST DYER ROAD SANTA ANA, CALIFORNIA

Prepared for:

ITT LLC 56 Technology Drive, Irvine, CA 92618

Prepared by:

AECOM Technical Services, Inc. 999 West Town and Country Road Orange, California 92868

September 15, 2016

September 15, 2016

RISK-BASED DISPOSAL APPLICATION Former Die Cast Area 666 East Dyer Road Santa Ana, California

Under civil and criminal penalties of law for the making or submission of false or fraudulent statements or representations (18 U.S.C. 1001 and 15 U.S.C. 2615), I certify that the information contained in or accompanying this document is true, accurate, and complete. As to the identified section(s) of this document for which I cannot personally verify truth and accuracy, I certify as the company official having supervisory responsibility for the persons who, acting under my direct instructions, made the verification that this information is true, accurate, and complete.

Crispin Wanyoike, P.E.

Project Manager

California Professional Engineer (Civil) No. C049847

9/15/2016

Date

CERTIFICATION PAGE

RISK-BASED DISPOSAL APPLICATION

Former Die Cast Area 666 East Dyer Road Santa Ana, California

I, Jeff Stanek, to the best of my knowledge and belief, certify that all sampling plans, sample collection procedures, sample preparation procedures, extraction procedures, and chemical analysis procedures used to assess or characterize PCBs at the ITT Dyer Road facility at 666 East Dyer Road, Santa Ana CA, are on file at the ITT offices located at 56 Technology Drive, Irvine, CA 92618, and are available for USEPA inspection.

Jeff Stanek

9/15/16 Date

Director, Environmental Affairs

TABLE OF CONTENTS

Sect	<u>tion</u>		<u>Page</u>
1.0	INTRO	DUCTION	1-1
	1.1	Organization	
	1.2	Written Certification	
2.0	CONCE	EPTUAL SITE MODEL	2-1
	2.1	Site Description	2-1
	2.2	Historical and Site Operations	2-1
	2.3	Physiography	
	2.4	Geology	
	2.5	Hydrogeology	
	2.6	PCB Investigations	
	2.7	Conceptual Site Model	2-8
3.0	REMEI	DIAL PLAN FOR THE SITE	3-1
	3.1	Risk-Based Disposal Approval Justification	3-1
	3.2	Remedial Action Implementation	3-1
4.0	REMEI	DIATION PROCEDURES	4-1
	4.1	Verification Sampling and Quality Assurance/Quality Control Measures	4-1
	4.2	Analytical Methodology	4-2
	4.3	Waste Storage, Handling and Disposal	4-2
	4.4	Equipment Decontamination	4-3
	4.5	Air Monitoring	4-4
	4.6	Contingency Plans	4-4
	4.7	Remediation Schedule	4-4
5.0	REMEI	DIAL DOCUMENTATION	5-1
	5.1	Field Inspection	5-1
	5.2	Photographs	
	5.3	Transport and Treatment/Disposal Certifications	
	5.4	Report	
6.0	REFER	ENCES	6-1

LIST OF FIGURES

<u>Title</u>
Site Location Map
Site Map
Total PCBs in Concrete/Asphalt
Total PCBs in Soil (0 to 2 Feet)
Total PCBs in Soil (Greater than 2 Feet to 5 Feet)
Total PCBs in Soil (Greater than 5 Feet to 10 Feet)
Sampling Locations with Total PCB Concentrations Greater than 50 mg/kg – Former Die Cast Area
Proposed Verification Sampling Locations – Former Die Cast Area
Proposed Verification Sampling Locations, East Building PCB-Impacted Concrete Area
PCB Cap Cross Section

LIST OF TABLES

<u>Table</u>	<u>Title</u>
Table 1	Summary Statistics – Former Die Cast Building PCB Investigations
Table 2	Conceptual Site Model

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
Appendix A	PCB Sampling Results in Concrete/Asphalt, Soil, and Groundwater
Appendix B	October 2015, March-April 2016, and August 2016 Die Cast Area Additional Sampling Report
Appendix C	Asbestos, Lead-Based Paint, and Other Hazardous Materials Survey Report
Appendix D	PCB Survey Report
Appendix E	TSCA Cap Technical Specifications

ii June 16, 2016

LIST OF ABBREVIATIONS AND ACRONYMS

μg/L micrograms per liter

ACM asbestos-containing material AECOM AECOM Technology Corporation

ARAR applicable or relevant and appropriate requirements
ATSDR Agency for Toxic Substances and disease Registry

bgs below ground surface

DTSC Department of Toxic Substances Control

EPC exposure point concentrations
GRA General Response Action
IC Institutional Controls

IMM inspection, maintenance, and monitoring

ITT ITT LLC

LBP lead-based paint

MCL maximum contaminant level mg/cm³ milligrams per cubic centimeter

mg/kg milligram per kilogram

OSHA Occupational Safety and Health Administration

PCB polychlorinated biphenyls PPE personal protection equipment

ppm parts per million

QA/QC quality assurance and quality control

RAC Remedial Action Completion RAO Remedial Action Objective RBDA Risk-Based Disposal Application

RBSL risk based screening level RG Remediation Goal RSL regional screening level

SARWQCB Santa Ana Regional Water Quality Control Board Site 666 East Dyer Road, Santa Ana, California

TSCA Toxic Substance Control Act

USEPA United States Environmental Protection Agency

iii June 16, 2016

1.0 INTRODUCTION

ITT LLC (ITT) retained AECOM Technology Corporation (AECOM) to prepare this Risk-Based Disposal Application (RBDA) for use in conducting remediation of polychlorinated biphenyl (PCB)-containing building materials, asphalt, and soil in the vicinity of the former Die Cast Building at the ITT property located at 666 East Dyer Road in Santa Ana, California (the Site) (Figures 1 and 2).

As discussed below, ITT recently completed a five-year effort to characterize the vertical and horizontal extent of PCBs in and around the former Die Cast Building under the supervision of the Santa Ana Regional Water Quality Control Board (SARWQCB). Based on this work, the PCB cleanup will address (1) the former Die Cast Building, its foundation and underlying soils; (2) portions of the concrete flooring within the East Building, located adjacent to the east of the Die Cast Building; and (3) discrete asphalt-covered areas (and shallow underlying soil) adjacent to the west side of the Die Cast Building. Groundwater at the facility is not contaminated with PCBs; however, groundwater continues to be monitored for PCBs and other constituents under oversight of the SARWQCB.

The intent is to complete the PCB cleanup in accordance with the risk-based PCB cleanup procedures set forth in 40 CFR §761.61(c) so that the PCBs will not pose an unreasonable risk to human health or the environment. In particular, this application proposes the following risk-based alternative disposal and characterization procedures:

- Leaving in place under a permanent cap certain soils contaminated in excess of the 100 milligrams per kilogram (mg/kg) PCBs otherwise allowed by the self-implementing cleanup provisions of 40 CFR 761.61(a); and
- Using an alternative verification sampling procedure that is more practicable for the circumstances of this site than the procedures in 40 CFR 761 Subpart O.

This application seeks approval for the handling of PCB remediation Waste as defined in 40 CFR Part 761.3. In addition, the application includes information on how PCB impacted building materials (i.e., Bulk Product Waste and Excluded PCB Products) generated incidental to PCB Remediation will be handled.

1.1 Organization

This RBDA is organized as follows:

- Section 1.0 provides the introduction and report organization.
- Section 2.0 presents the current conceptual site model.
- Section 3.0 presents the remedial plan for the site.

- Section 4.0 presents remediation procedures.
- Section 5.0 identifies required documentation for proposed field activities.
- Section 6.0 presents the document references.

The RBDA appendices include:

- Comprehensive PCB sampling results for soil, concrete and groundwater
- A hazardous materials characterization report for the building to be demolished
- A PCB characterization report for the building to be demolished
- Technical specifications to be used during the implementation of the RBDA.

1.2 Written Certification

This RBDA also serves as notice to the United States Environmental Protection Agency (EPA) per 40 CFR §761.61(a) of the intent to perform PCB remediation activities at the subject site. ITT will not commence work until the risk-based clean-up procedures are approved by EPA. A copy of this document also will be submitted to the SARWQCB to satisfy requirements to notify state regulators.

Included in this document is written certification from ITT, as required under §761.61(a)(3)(E), confirming. that the storage location for all reports describing sample collection and analysis procedures used to assess or characterize PCBs, waste handling procedures and disposal information for materials addressed by this document are available for EPA inspection at ITT's offices.

2.0 CONCEPTUAL SITE MODEL

2.1 Site Description

The Site is located in a mixed industrial and commercial area at 666 East Dyer Road in Santa Ana, California (see Figure 1). The property and improvements are owned by ITT. The property is zoned for industrial use (Class M2, Heavy Industrial). The Site occupies approximately 25 acres and has two primary buildings: the East Building and the West Building. The historic die cast operations, which are the source of PCBs at the Site, were located only in the die cast area of the East Building (Figure 2). In this document, the die cast area is generally referred to as the "Die Cast Building," to distinguish it from the rest of the East Building. The East Building was constructed in multiple phases until the current footprint was completed, largely by the 1970s. The Die Cast Building was one of the initial phases and is clearly physically and visually distinguishable from the rest of the East Building.

2.2 Historical and Site Operations

ITT and its predecessors manufactured a broad portfolio of interconnect products across the military, aerospace, industrial, instrumentation, transportation, and telecom markets. Die cast operations took place in the Die Cast Building. Most of the other manufacturing operations were conducted in the East Building, including machining of metal parts, degreasing, plating, and molding of rubber and plastic components. No manufacturing use of PCBs in the East Building has been identified. The West Building was used for assembly, packaging, shipping, and receiving of products and raw materials.

Die cast operations began in approximately November 1959, and until 1982, hydraulic oil containing PCBs (present either intentionally, or, in later years, unknowingly as an impurity) was used as a working fluid in the die cast machinery. In 1982, ITT retained IT Corporation to conduct PCB decontamination, which included removal of all hydraulic oil and triple flushing the several die cast machines, and cleaning the entire inside of the Die Cast Building, including the floor (Leighton and Associates, Inc., September 1988). To the extent there have been historical releases of PCBs in the Die Cast Building, this history indicates that the vast majority (if not all) would have occurred prior to April 1978. Die cast operations at the facility ceased in 2012, and all other manufacturing operations at the facility ceased in June 2016. ITT plans to demolish and remove essentially all above-surface structures and to sell the parcel for industrial and/or commercial non-residential use consistent with its zoning and primary surrounding uses.

2.3 Physiography

The ITT property is located approximately 2 miles north of the northern boundary of the Newport Mesa, a relatively high topographic area consisting of Quaternary deposits. The northern boundary of the San Joaquin Hills is approximately 3 miles to the south. The Site consists primarily of buildings surrounded by asphalt paved parking areas. Approximately 99% of the Site is covered by impervious surfaces. The Site's relative elevation is approximately 48 feet above mean sea level.

2-1 Septermber 16, 2016

2.4 Geology

The regional geology is characterized as Quaternary alluvium and colluvium within the upper units. The lower units are Tertiary age. The local geology at the Site consists predominately of clay from ground surface to approximately 30 feet below ground surface (bgs). Previous investigations also have encountered silty clay with some gravel within the first five feet, then predominately dry, cohesive clay to a depth of at least 14 feet.

2.5 Hydrogeology

The Site is situated in the Main Basin Pressure area of the Orange County Groundwater Basin (Basin). The Pressure area is generally defined as the area of the Basin where large quantities of surface water and near-surface groundwater is impeded from percolating into the major producible aquifers by clay and silt layers at shallow depths (upper 50 feet). Previous investigations at the Site have yielded information to allow for the identification of three lithostratigraphic units beneath the Site -- Shallow, Intermediate and Deep -- as described further below. All three units are within the Shallow aquifer system as defined by the Orange County Water District, which is estimated to extend to a depth of approximately 160 feet bgs in the Site vicinity.

Groundwater is typically first encountered within the Shallow Unit at approximately 15 to 20 feet bgs; Intermediate Unit at approximately 25 to 40 feet bgs, and the Deep Unit at approximately 60 feet bgs. The potentiometric surface of groundwater equilibrates to 5 to 12 feet bgs and averages approximately 10 feet bgs in all wells. Thus, Shallow, Intermediate and Deep Unit groundwater is confined to semi-confined by overlying aquitards, confirming that the Site is located within the Pressure Area. Groundwater flow is generally towards the south-southeast in the Shallow Unit and Intermediate Unit, and towards the southwest in the Deep Unit.

2.6 PCB Investigations

The potential presence of PCBs in soil, concrete and groundwater at the site were investigated in the late 1980s in consultation with EPA and SARWQCB, and more recently, from 2011 through April 2016, under the oversight of the SARWQCB and in consultation with EPA. All sampling results for soils, concrete, asphalt, and groundwater are provided in Appendix A.

2.6.1 Sample Collection and Analysis Procedures

Descriptions of the standard operating procedures (SOPs) for sample collection and extraction/analysis for soil, concrete and asphalt investigations conducted since 2011 are provided in the underlying approved work plans and reports (AECOM, 2010) and can be summarized here as follows: All sampling locations within asphalt and concrete areas were inspected for staining prior to drilling. Surface samples for PCB analysis were collected by using a hammer drill to drill to a depth of approximately ½ inch to generate a uniform,

finely ground powder, in accordance with the RI Work Plan (AECOM, 2010) and the USEPA Region 1 Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (PCBs) (USEPA, 2011). Several holes were drilled at each location until an adequate sample volume (approximately 30 grams) was accumulated. The powdered asphalt or concrete was then collected using a clean decontaminated stainless steel scoopula. After collection of surface samples, boreholes were advanced using a hand auger and direct-push technology (DPT) drill rig to the target sample depth. All samples were placed in laboratory supplied glass jars and chilled coolers and submitted to the analytical laboratory for analysis. Sample analysis methods are summarized in the paragraphs below and detailed in the cited underlying reports.

2.6.2 Historic PCB Investigations

Previous investigations, other than the PCB decontamination efforts conducted in 1982, include the following:

- In March 1987, a preliminary concrete and soil investigation was initiated at the Die Cast Building. This investigation identified the presence of PCBs in shallow soil. In August 1987, the concrete floor was cored at 16 locations, and the subsurface soil was sampled to a depth of 2.5 feet below the bottom of the floor slab. Selected soil samples were tested for PCBs using USEPA Method 8080. The analytical results showed PCB-impacted soil at shallow depths beneath certain areas of the Die Cast Building. The PCBs were detected at concentrations ranging from 14.7 to 2,563 mg/kg (Leighton and Associates, Inc., November 1987).
- A Phase II Site Investigation was conducted in July 1988 by Leighton. Leighton drilled and sampled soil from 12 locations inside and to the west of the Die Cast Building. Eight of the boring locations were co-located with Phase I samples and four borings were placed at new locations. Each boring location was drilled and sampled to a total depth of 14 feet below the bottom of the floor slab. PCBs were detected only in samples collected from borings located inside the building. The vertical extent of PCBs in the soil borings was limited generally to the first two feet below the floor slab, with two exceptions. Boring H-3 in the northwest portion of the building had a detection of 19.2 mg/kg at a depth of 7 feet bgs, and boring H-13 in the south-central portion of the building had a detection of 16 mg/kg at a depth of 10.5 feet bgs. The PCBs were detected in soil at concentrations ranging from 0.5 to 9,800 mg/kg. Groundwater was not encountered in any of the soil borings. However, groundwater samples were collected from wells MW-2DA (upgradient), MW-103A (downgradient) and MW-104AB (down/cross-gradient). All groundwater results were non-detect for PCBs during this event (Leighton and Associates, Inc., September 1988).
- In a letter dated September 13, 1990, the SARWQCB requested routine sampling of groundwater monitoring well MW-200 (now referred to as MW-200SA) for the analysis of PCBs. Well MW-200SA was installed on June 14, 1990 outside, immediately adjacent to the west side of the Die

Cast Building and screened across the water table surface to monitor for PCBs as well as other Site compounds of concern. The SARWQCB letter further clarified that since soil sampling results indicated that PCBs are localized in shallow soil within the Die Cast Area and present within low permeability clays, any cleanup of PCB impacted soil could be postponed until the facility operations changed and the die cast machines were removed, provided PCBs were not detected in monitoring well MW-200SA. PCBs have never been detected in monitoring well MW-200SA.

2.6.3 Groundwater Investigations

Groundwater at the property historically has been investigated to address a release of volatile organic compounds (VOCs) from historic operations. Groundwater remediation and monitoring to address the VOCs are ongoing. Five groundwater monitoring wells have been monitored for PCBs for several years and the monitoring continues on a semi-annual basis as a component of the groundwater monitoring program conducted under oversight of SARWQCB. Four of the wells, MW-200SA, MW-408S, MW-409S, and MW-411S (Figure 2) are hydraulically downgradient from the die cast building, and have never had any detections of PCBs, confirming that PCBs are not present in or migrating in groundwater even after more than 50 years since die cast operations began. Monitoring well MW-420S was installed within the footprint of the Die Cast Building and screened within soil known to be impacted with high levels of PCBs. Samples collected from MW-420S have been analyzed for PCB Aroclors eight times between March 2012 and July 2015. Aroclor 1242 and Aroclor 1248 have been detected in samples at concentrations greater than the reporting limits with maximum reported concentrations of 8.4 micrograms per liter (µg/L) and 11 µg/L, respectively. This may reflect PCBs attached to soil particles in the sample rather than dissolved concentrations of PCBs in groundwater. While there is no California maximum contaminant level (MCL) for these specific PCB Aroclors in groundwater, they exceed the Federal total PCB MCL of 0.5 µg/L. However, the absence of PCB detections in wells MW-200SA, MW-2S, MW-408S, and MW-409S demonstrate that PCBs reported in soil below the water table are immobile and not migrating, consistent with the typical fate and transport characteristics of PCBs in these circumstances.

Groundwater monitoring results for PCBs in this area are results are summarized on Appendix A. Relevant monitoring well locations are illustrated on Figure 2.

2.6.4 Recent PCB Investigations

Between December 2011 and August 2016, AECOM conducted eight additional sampling events (AECOM 2012, 2013, 2014a, and 2014b and Appendix B). Samples were collected at 297 locations resulting in 841 primary samples (including 197 asphalt/concrete samples) from the Die Cast Building, the East Building, and the adjacent asphalt areas (see Figures 3, 4, 5, and 6). Soil samples were collected at various depths to confirm the vertical extent of PCBs. The purpose of these investigations was to characterize the lateral and vertical distribution of PCBs in soil, concrete, and asphalt within and near the former Die Cast Building. The most recent investigations in October 2015 and April 2016 are summarized in Appendix B.

2.6.5 PCB Characterization Sampling Results Summary

The following subsections present a brief narrative summary of all PCB sampling results for the Site, by area.

2.6.5.1 Concrete Sampling Within Former Die Cast Building

Based on the operations conducted within the Die Cast Building, samples to characterize the potential release of PCBs were collected from the concrete slab at 97 locations (Figure 3). Samples were analyzed for PCB Aroclors by USEPA Method 8082. The maximum concentration for Total PCBs (the sum of all detected Aroclors [Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268]) was 17,200 mg/kg at location SB-43. PCBs were reported through the total thickness of the Die Cast Building concrete slab.

2.6.5.2 Soil Sampling Beneath Former Die Cast Building

Based on the PCB concentrations in concrete, soil samples to evaluate the extent of release of PCBs to soil were collected. A total of 463 soil samples were collected from soils beneath the former Die Cast Building slab and analyzed for PCB Aroclors by USEPA Method 8082 (see Figures 4, 5, and 6). As summarized on Table 1, the maximum concentration for Total PCBs was 22,000 mg/kg in the sample collected from borehole SB-16 at a depth of 5 feet bgs. However, concentrations in excess of 2,200 mg/kg were reported in samples as deep as 25 feet bgs. Soil samples collected from depths exceeding 10 feet were below the water table.

Table 1. Summary Statistics – Former Die Cast Building PCB Investigations

Maximum PCB Concentration by Depth Interval					
Depth Interval (ft)	Maximum (mg/Kg)	Location			
0-1	7,920	SB87			
1-5	22,000	SB16			
5-10	4,800	SB16			
10-15	3,650	SB73			
15-20	4,800	SB16			
>20	2,270	SB10B			

Notes:

Ft = feet

mg/Kg = milligrams per kilogram (or parts per million [ppm])

PCB = polychlorinated biphenyl

2.6.5.3 Concrete Sampling Within East Building

To investigate potential PCB cross-contamination of East Building floor surfaces from foot traffic from the Die Cast Building, concrete samples were collected at 114 surface and shallow locations within the East

2-5 Septermber 16, 2016

Building just east of the former Die Cast Building. At each location, samples were collected from the concrete surface (0-0.5 inches) and analyzed for PCB Aroclors by USEPA Method 8082. PCB Aroclors were detected at concentrations greater than 1 mg/kg at 88 of the locations with a maximum concentration for Total PCBs of 228.5 mg/kg in the sample collected from borehole SB-165. In addition, at three locations (SB-164, SB-169, and SB-176), a concrete sample was collected from a core at a depth of 1.5 inches below the concrete surface. PCB Aroclors were detected at concentrations less than 1 mg/kg in all three locations, with concentrations ranging from less than the laboratory reporting limit to 0.172 mg/kg (see Figure 3). These results show that, where present, PCBs are present only in very low concentrations and only present in approximately the top inch of the concrete.

2.6.5.4 Soil Sampling Within East Building

At 14 locations within the East Building (SB-119, SB-124, SB-132 and SB-133, SB-164, SB-169, SB-173, SB-176, SB-182, SB-205, SB-206, SB-207, SB-210, and SB-215), samples were collected in soil below the slab and analyzed for PCB Aroclors by USEPA Method 8082 (see Figure 4). The maximum concentration for Total PCBs soil was 0.336 mg/kg in the one-foot samples collected below the concrete from location SB-169. At nine of the locations, PCB Aroclors were not detected at concentrations greater than the analytical reporting limit. The PCB impacts detected within the East Building appear to be incidental to other activities (e.g., the result of foot traffic from the Die Cast Building.

2.6.5.5 Asphalt Sampling in Paved Area West of Former Die Cast Building

Asphalt samples were collected from 31 locations within the paved area west of the former Die Cast Building where PCBs containing materials may have been stored or where PCBs may have been spread by foot traffic. Forty-five asphalt samples were analyzed for PCB Aroclors by USEPA Method 8082 (see Figure 3). The maximum concentration of Total PCBs in the asphalt paving in this area was 33.8 mg/kg in location SB-80.

2.6.5.6 Soil Sampling in Paved Area West of Former Die Cast Building

Ninety six samples were collected from soils below the paved area west of the former Die Cast Building. Eighty-two soil samples were analyzed for PCB Aroclors by USEPA Method 8082 (see Figures 4, 5, and 6) (some collected samples were archived pending results of shallower samples, and based on results were not analyzed). The maximum concentration of Total PCBs in this area was 831 mg/kg in location SB-146 at a depth of 3 feet bgs. It is suspected that PCBs in the soil in this area may have been as a result of temporary storage of PCB containing materials/equipment. The results indicate that Total PCBs greater than 1 mg/kg were predominantly within 1 feet of the asphalt paving.

2.6.5.7 Concrete Sampling Within West Building

The distribution of PCBs in soil in the area west of the Die Cast Building suggested that PCBs may have been present below the West Building. Soil and concrete surface samples were collected at seven locations in the floor / slab of the West Building (SB-156 through SB-159, and SB-177 through SB-179). Two of those samples were analyzed for PCB Aroclors by USEPA Method 8082 (SB-157 and SB-158), and PCB Aroclors were detected in SB-158 with a Total PCB concentration of 0.178 mg/kg (see Figure 3). The remaining collected samples were archived pending results of shallower samples, and based on results were not analyzed.

2.6.5.8 Soil Sampling Within West Building

Thirty-five samples were collected from shallow soil borings beneath the slab of the West Building. Seventeen samples were analyzed for PCB Aroclors by USEPA Method 8082 (see Figures 4 and 5) (some collected samples were archived pending results of shallower samples, and based on results were not analyzed). The maximum concentration of Total PCBs in this area was 1.66 mg/kg in SB-158 at 1-foot bgs (PCB Aroclors were not detected above laboratory reporting limits in the 3-foot bgs sample collected at that location). The presence of Total PCBs above 1 mg/kg in the soil beneath the west building were highly localized and constrained to SB-158.

2.6.6 Pre-demolition Characterization of Building Materials

In preparation for building demolition and to ensure the proper management of demolition debris, a survey was conducted throughout the East and West Buildings by ERM, Inc. to identify the potential presence of PCBs and other hazardous substances in building materials. The scope and conclusions of this survey are summarized below. The reports of these activities are reproduced in Appendix C and D.

2.6.6.1 Asbestos, Lead-Based Paint and Other Hazardous Materials Survey

A survey was conducted to evaluate the potential presence of asbestos-containing material (ACM), lead-based paint (LBP), and other hazardous materials within the East Building, as well as other portions of the ITT facility. Results indicated that ACM is present in portions of the East Building (including the Die Cast Building within the East Building). Impacted materials include floor mastic, joint compound, roofing, and other materials. LBP containing greater than 0.06 mg/cm³ but less than 1.0 mg/cm³ lead was identified in the East Building on columns, beams, windows, and other materials. Other hazardous materials also were identified, including fluorescent ballasts, fluorescent light bulbs and fixtures, and other materials. Appendix C presents a summary of sampling activities and results.

2.6.6.2 PCB Survey

Building components within the East Building (including the Die Cast Building within the East Building) and the West Building were tested for PCBs. Paint, caulk, concrete dust, and wipe samples were collected. Appendix D presents the sampling methodology and results. A summary is provided below:

• Paint – Total PCB concentrations exceeding 1 mg/kg were detected in 42 of the 50 samples collected at concentrations ranging from 1.63 to 605 mg/kg. Total PCBs were detected at

2-7

- concentrations greater than 50 mg/kg in 19 of the 58 samples collected. Most of the samples exceeding the criteria were collected from the Die Cast Building.
- Wipe Samples were collected from the ceiling, vents, exhaust fans and oil staining on walls and I-Beams Total PCB concentrations exceeding 10 micrograms per 100 cubic centimeters (μg/100cm²) were detected in 2 of the 6 samples collected. Both samples exceeding the criteria (WP-002 and WP-006) were collected in the Die Cast Area in the East Building.
- Die Cast Building dust materials Total PCB concentrations exceeding 1 mg/kg were detected in 4 of the 6 samples collected from accumulated dust and grime within the Die Cast Area in the East Building. Total PCB concentrations at these locations ranged from 6.68 to 30.0 mg/kg.
- Caulking Total PCBs were detected in all 14 samples collected at concentrations ranging from 3.15 to 237,000 mg/kg which includes only one sample (CK-007 135 mg/kg) from the Die Cast Building. The remaining 13 samples were collected from the East and West buildings, 7 of which had total PCBs were detected at concentrations greater than 50 mg/kg in 8 of the samples collected.
- Die Cast Building Interior Concrete Walls Total PCBs were detected in all samples collected at concentrations ranging from 5.58 to 68.9 mg/kg, all exceeding 1 mg/kg. Total PCBs were detected above 50 mg/kg in one sample (CC-002) at a concentration of 68.9 mg/kg. All samples were collected from the walls of the Die Cast Building.

Based on the above characterization, the impacted building materials will be classified/handled as follows:

- Painted building materials with less than 50 mg/kg total PCBs will be classified as Excluded PCB Products.
- Painted building materials outside the Die Cast Building with greater than 50 mg/kg total PCBs will be classified as Bulk Product Waste.
- Caulking from outside the Die Cast Building will be classified as Bulk Product Waste.
- Caulking from the Die Cast Building that can be efficiently segregated will be also be classified
 as Bulk Product Waste. Caulking that cannot be reasonably segregated will be classified as PCB
 Remediation Waste.
- Non-porous surfaces such as I-beams and large metal surfaces will be segregated and decontaminated in accordance with 40 CFR Part 761.79 where practicable. Prior to being shipped off-site, the decontaminated surfaces will be sampled to verify PCB removal. Non-porous materials than cannot be practicably decontaminated will be disposed of as bulk PCB remediation waste.

2.7 Conceptual Site Model

The foregoing description of release mechanisms, PCB distribution in both the environment and in building materials, and the fate and transport of PCB in the environment is summarized in the conceptual site model

(CSM) presented in Table 2. The CSM provides a graphical depiction of the exposure pathway, potential receptors and provides an evaluation of how the proposed risk based approach will prevent unreasonable risk to human health and the environment.

2.7.1 Release Mechanisms and Distribution of PCBs

The source of PCBs was the use of PCB containing oils between 1959 and 1982 in the die cast operations. The characterization data suggests that PCBs were released into the concrete and soil beneath the Die Cast Building. The PCBs in the adjacent areas, <u>i.e.</u>, the East Building concrete floors and in the asphalt and soils to the west of the Die Cast Building may have been as a result of foot tracking or the temporary storage of equipment/parts with PCB oils. Operations subsequent to 1982 used non-PCB containing fluids/oils.

2.7.2 PCB Distribution In Soils and Building Components

Concentrations in the Die Cast Building slab and underlying soils are understood to represent the downward gravitational migration of the residual of historic spills of hydraulic oils in connection with normal use within the Die Cast Building. As described above, all use of oils containing PCBs was discontinued no later than the early 1980s so there is no continuing source. Surface contamination on the interior of the Die Cast Building similarly is understood to be the result of spills or aerosolization of hot hydraulic oils in normal use.

As a result of these actions, the Site is left with high concentrations of PCB oils distributed at depth in a relatively narrow band almost entirely below the footprint of the Die Cast Building. The major mass of PCBs is present within the concrete floor of the former Die Cast Building and the uppermost 3 to 5 feet of soil. Concentrations attenuate with depth, although PCB concentrations up to 2,270 mg/kg are present at particular locations to depths of 25 feet bgs (soil boring SB-108).

Additionally, PCB-containing oil appears to have been tracked to adjacent areas, including the hallways in the western portion of the adjacent East Building, and the asphalt areas to the west of the former Die Cast Building. Figures 3 through 6 present sampling locations, color coded by concentration, for concrete/asphalt and soil (the sum of all detected PCB Aroclors).

2.7.3 Potential for PCB Migration to Groundwater

PCBs have not been detected in groundwater downgradient of the die cast area and long term monitoring data demonstrates that there is no reasonable threat of PCB migration to groundwater from this site.

Table 2 Conceptual Site Model

le 2 Conceptual Site Model Receptors						
		Current Land Use Future Land Use]	
Contributing Source Transport Mechanism Medium Exposure Route	Onsite Workers	Construction Workers	Onsite Workers	Construction Workers	Remedy	Protectiveness Evaluation of the Remedy
Die Cast Operations Tracking from Die Cast Operations Concrete/Asphalt Dermal Contact with concrete	Potentially Complete	Potentially Complete	Potentially Complete	Potentially Complete	Removal/disposal of impacted concrete and asphalt.	Removal/disposal of the asphalt concrete removes future exposure potential.
Direct Release Subsurface Soil Dermal Contact with Soil	Incomplete	Potentially Complete	Incomplete	Potentially Complete	Removal of impacted soil outside the Die Cast Building and permanent car over the Die Cast Building foolprint.	Removal of impacted soil outside the Die Cast Building and a permanent cap over the Die Cast Building
Incidental Ingestion of Soil	Incomplete	Potentially Complete	Incomplete	Potentially Complete		
Ingestion of Plants/Animals (bio-uptake)	Incomplete	Incomplete	Incomplete	Incomplete	None	There are no agricultural activities on-site. The Site is zoned for industrial use therefore, the pathway for residential receptors is incomplete
RundifiDischarge from Asphalt Aleas Surface Water Surface Water Dermal Absorption and Industrial Ingestion of surface water	Potentially Complete	Potentially Complete	Potentially Complete	Potentially Complete	None	There are no permanent surface water bodies at the site. In addition, the removal and disposal of impacted asphalt will eliminate the source of PCBs to surface water.
Windsome Particulates from Agribal Air Inhabition of Fugilive Particulates	Potentially Complete	Potentially Complete	Potentially Complete	Potentially Complete	Removal of impacted asphalt and soil outside the Die Cast Building and permanent cap over the Die Cast Building footprint.	Removal of impacted asphalt and soil outside the Die Cast Building and permanent cap over the Die Cast Building footprint removes future exposure potential from windborne particulates
Leaching from Subsurface Soil to Groundwater Groundwater	Incomplete	Incomplete	Incomplete	Potentially Complete	None, however groundwate monitoring will continue as	
Drinking Water	Incomplete	Incomplete	Incomplete	Potentially Complete	part of demonstrating the effectiveness of the remedy	properties or PCBs. Immiration potential will continue to be minimized by the permanent cap. Definal or drinking exposure to groundwater will be prevented through implementation land use controls.

Five groundwater monitoring wells have been monitored for PCBs for several years and the monitoring continues on a semi-annual basis as a component of the groundwater monitoring program conducted under oversight of SARWQCB. Four of the wells, MW-200SA, MW-408S, MW-409S and MW-411S (Figure 2) are hydraulically downgradient short distances from the former Die Cast Building, and have never had any detections of PCBs, confirming that PCBs are not migrating in groundwater even after more than 50 years since die cast operations began.

Monitoring well MW-420S was installed within the footprint of the Die Cast Building and screened within soil known to be impacted with high levels of PCBs. Samples collected from MW-420S have been analyzed for PCB Aroclors eight times between March 2012 and July 2015. Aroclor 1242 and Aroclor 1248 have been detected in samples at concentrations greater than the reporting limits with maximum reported concentrations of 8.4 micrograms per liter (μ g/L) and 11 μ g/L, respectively. This is understood to reflect PCBs attached to soil particles in the sample rather than dissolved concentrations of PCBs. PCBs are nonpolar and therefore are only slightly soluble. This characteristic inhibits the transport of PCBs from soil to groundwater and makes them bind strongly to soils. (ATSDR, 2000).

The absence of PCB detections in wells MW-200SA, MW-2S, MW-408S, and MW-409S and the passage of time demonstrate that PCBs reported in soil below the water table are immobile and not migrating and not reasonably likely to migrate in the future. Additionally, groundwater at the site is not currently used and future use will be prohibited by institutional controls that will run with the land as described in Section 3.2.8.

In summary, the PCBs in soil contacting groundwater represent no practical risk of exposure to current or future groundwater users due to the isolated nature of the release, the remote migration potential, the confirmed absence of migration more than 50 years after die cast operations began, and the deed restriction that will prohibit groundwater use. However, monitoring for PCBs will continue as a component of the groundwater-monitoring program under oversight of SARWQCB.

3.0 REMEDIAL PLAN FOR THE SITE

3.1 Risk-Based Disposal Approval Justification

An evaluation of potential response actions that would prevent unreasonable risk to human health and the environment was conducted to support a risk-based cleanup approach. Remediation options that prevent direct contact with the PCB impacted soils were considered. Based on this evaluation, a permanent cap compliant with TSCA provisions, coupled with institutional controls, was determined to prevent unreasonable risk by preventing any human exposure to PCBs in soil below the former Die Cast Building. Other options, such as removing the PCB impacted soil were considered. An alternative of excavating, transporting and disposing of all soils greater than 1 mg/kg PCBs would involve a large excavations to depths of 25 or more feet (i.e., to 10 feet or more below the water table) and present tremendous engineering challenges at both the excavation and verification stages. The excavation approach also would generate large quantities of water contaminated with PCB soil particles that would have to be managed, characterized and treated or disposed. The excavation option would result in potentially greater risk to construction workers as opposed to a capping the impacted soils in place. And it would provide no practical reduction in exposure risk.

As demonstrated by decades of groundwater monitoring (and discussed in detail in section 2.7.3, above), PCBs at the site do not present a practical risk to groundwater. The PCBs are not migrating from below the footprint of the former Die Cast Building. To the extent that such immobility in the past may have been attributable to the absence of infiltrating rainwater due the presence of the Die Cast Building, that protection will be restored after the removal of the Die Cast Building slab by the installation of the TSCA cap

In summary, preventing direct exposure to the PCBs in soil by capping the affected soils in place coupled with institutional controls to assure that it remains in place and intact in perpetuity, will be fully sufficient to prevent any unreasonable risk to human health. In addition, the PCBs in soil pose only a very remote risk of dissolution and transport in groundwater due to the isolated nature of the release, the low migration potential of PCBs and the confirmed absence of migration more than 50 years after die cast operations began.

3.2 Remedial Action Implementation

The proposed site remediation includes the demolition of buildings with PCB impacted materials, and as a result, this plan includes details on the handling of PCB remediation Waste, PCB Bulk Product Wastes and Excluded PCB Products waste. As indicated in the introduction, EPA will approve the RBDA components relating to the PCB Remediation Waste and will acknowledge the presence, classification and handling procedures for the Bulk Product Waste and Excluded Products waste. The following sections describe the various components of the site remediation:

• Demolition and offsite disposal of the Die Cast and East Building;

- Removal and offsite disposal of PCBs in asphalt, soil and concrete with concentrations above 1 mg/kg present in areas outside the Die Cast Building footprint; and
- Capping remaining contaminated soils currently below the Die Cast Building under a cap consistent with the self-implementing procedures at 40 CFR §761.61(a)(7) and (8), coupled with appropriate institutional controls, including capping some soils with greater than 100 mg/kg PCBs, pursuant to a 40 CFR §761.61(c) alternative disposal approval.

3.2.1 Former Die Cast Building (above slab)

Based on the initial hazardous materials characterization of the Die Cast Building structure, it and (except as noted) all of its components above the slab will be deemed PCB Bulk Remediation Waste with greater than 50 mg/kg and will be demolished and disposed of in a hazardous waste landfill or a PCB disposal facility, per 40 CFR §761.61(a)(5)(i)(B)(2). However, some of the non-porous structures, such as I-beams and large metal surfaces, that are amenable to efficient decontamination may be decontaminated in accordance with 40 CFR §761.79, rather than dispose of offsite. Caulking from the Die Cast Building will be handled as PCB Remediation Waste. During demolition, measures will be taken to control and contain dispersion of PCBs. Additional procedures for conducting the remediation are presented in Section 4.0.

Prior to demolition, identified asbestos containing materials in the Die Cast Building and the rest of the East Building will be removed and disposed of in accordance with the Asbestos NESHAP, 40 CFR Part 61 Subpart M, including the prior notice provisions.

3.2.2 East Building (above slab)

Based on the initial hazardous materials characterization of the East Building structure, PCBs were identified in dried paint and caulk in some of the building materials. These areas and areas immediately adjacent to them (within one foot) will be classified as a PCB Bulk Product Waste and will be isolated and then removed prior to the demolition of the rest of the non PCB impacted building materials. All the paint within the East Building was found to contain PCBs at concentrations less than 50 mg/kg with the exception of the paint on two support poles. As part of demolition of the East Building, all of the support poles located within the building that are of the same year of construction as the support poles with elevated PCB concentrations will be handled as PCB Bulk Product Waste. The remaining painted areas with less than 50 mg/kg and will be handled as Excluded PCB Product waste. The PCB Bulk Product Waste will be disposed in accordance with 40 CFR 761.62(b)(1) with the remaining building material being either recycled or disposed of in a municipal waste landfill as authorized by and subject to the notice provisions of 40 CFR 761.62(b)(1).

3.2.3 Impacted Asphalt Areas (and underlying soil) West of Die Cast Building

The PCB-impacted Asphalt areas and underlying soil will be excavated and disposed of as Bulk PCB Remediation Waste to the extent necessary to achieve residual Total PCB concentrations of less than 1 mg/kg consistent with prevailing federal standards determined to present no unreasonable risk for high occupancy areas. Current characterization data suggest this will generally require excavation of no more than approximately 1 foot of soil below the asphalt except near SB-146 where the excavation will be approximately 10 feet deep.

Excavated soils and asphalt will be handled as Bulk PCB Remediation Waste. Based on the sampling methodology performed to date, there is sufficient data to segregate the remediation waste into stockpiles of less than 50 mg/kg and greater than 50 mg/kg for purposes of disposal. Figure 7 shows the sampling locations with PCB concentrations greater than 50 mg/kg. Bulk PCB Remediation Waste with greater than or equal to 50 mg/kg will be excavated and segregated prior to disposal at a hazardous waste landfill or a PCB disposal facility, per 40 CFR §761.61(a)(5)(i)(B)(2). Bulk PCB Remediation Waste currently with less than 50 mg/kg will be disposed of in a municipal waste landfill or as otherwise allowed under 40 CFR §761.61(a)(5)(i)(B)(2)(ii).

Following the soil excavation, verification sampling will be performed on the periphery of the excavation area, adjacent to areas known to have Total PCBs greater than 1 mg/kg, as depicted on Figure 8 (purple stripes). Verification sampling would not be conducted in the areas on Figure 8 with the orange hatching as this area will be capped together with the Die Cast Building soils because total PCBs greater than 1 mg/kg exist at depth. At locations where the excavation depth exceeds 1 foot, sidewall samples will be collected at mid-depth; a minimum of 4 sidewall samples will be collected at these locations. The verification sampling to confirm that the required cleanup levels have been achieved will be conducted as described in section 4.1. This verification sampling will be to ensure that the cleanup has been attained with a 95 percent confidence level. Interim sampling may be conducted during remediation using field screening tests.

If verification sampling indicates that the 1 mg/kg cleanup objective has not been achieved, additional excavation and verification sampling will be conducted that meet the objectives, or, alternatively, the cap area will be extended to cover the affected impacted asphalt and underlying soil.

3.2.4 East Building Concrete Slab

The concrete surfaces in the East Building that are impacted with total PCBs greater than 1 mg/kg will be remediated by scarifying to remove PCB-impacted concrete from the surface to the extent necessary to achieve a cleanup level of 1 mg/kg, consistent with prevailing federal standards determined to present no unreasonable risk for high occupancy areas. It is anticipated that approximately the upper 1 inch of concrete will be removed. The verification sampling to confirm that the required cleanup levels have been achieved will be conducted as described in section 4.1.

However, if it becomes inconvenient or impractical to address the concrete surface contamination by surface scarification/removal, the entire East Building concrete slab will be demolished and disposed of offsite as bulk PCB Remediation Waste. Based on the sampling methodology performed to date, there is sufficient data to segregate this Remediation Waste into stockpiles of less than 50 mg/kg and greater than 50 mg/kg (see figure 9). Excavated concrete deemed a Bulk PCB Remediation Waste and with PCBs greater than 50 mg/kg and will be disposed of in a hazardous waste landfill or a PCB disposal facility, per 40 CFR §761.61(a)(5)(i)(B)(2)(iii). Concrete deemed a Bulk PCB Remediation Waste and with less than 50 mg/kg PCBs will be disposed of in a municipal waste landfill or as otherwise allowed under 40 CFR §761.61(a)(5)(i)(B)(2)(ii). Under this option, there would be no verification sampling given that soil below the concrete is not impacted (see Section 2.6.5.4, above), and all concrete would be disposed.

3.2.5 Die Cast Building Concrete Slab

The Die Cast Building concrete slab and footings, and approximately 1 foot of soil immediately beneath the slab, all will be deemed a Bulk PCB Remediation Waste with greater than 50 mg/kg PCBs and will be demolished and disposed of in a hazardous waste landfill or a PCB disposal facility, per 40 CFR §761.61(a)(5)(i)(B)(2).

3.2.6 Die Cast Building Soils

After removal of the Die Cast Building slab, the remaining Die Cast Building soils will be covered with an engineered cap (see Figure 10) meeting the engineering requirements of 40 CFR §761.61(a)(7) and the deed notice requirements of 40 CFR §761.61(a)(8). The edges of the cap will extend beyond the actual footprint of the former Die Cast Building and include former asphalt covered areas established or assumed during verification to have PCBs in concentrations greater than 1 mg/kg. The cap will extend approximately 5 feet beyond the verified limits of total PCBs less than or equal to 1 mg/kg. Based on previous sampling results, it is anticipated that approximately 30,000 square feet will require capping in this area, however the area will be updated based on verification sampling results. A land survey will be performed after the cap is installed to memorialize its extents, and institutional controls will be implemented to ensure protection, inspection and maintenance of the cap, and to ensure that use of the area within the engineered cap remains consistent with imposed land use restrictions.

This remedy is consistent with the self-implementing cleanup requirements for Bulk PCB Remediation Waste for low occupancy area set forth in 40 CFR §761.61(a)(4)(i)(B)(3) and 40 CFR §8761.61(a)(7) & (8), except that it is proposed under 40 CFR 761.61(c) to leave in place under the permanent cap certain soils contaminated in excess of the 100 mg/kg PCBs otherwise allowed by the self-implementing provisions. Details of the cap, the institutional controls and the basis for the risk-based approval for leaving greater than 100 mg/kg PCBs in soil under the cap are discussed in the following sections.

3-4 September 16, 2016

3.2.7 TSCA Cap Construction

The TSCA cap will consist of uniform placement of at least 6 inches of asphalt and 8 to 10 inches of base material. Its purpose will be to prevent human exposure to, and infiltration of water into, the capped soils. The TSCA Cap will meet the design requirements specified in 40 CFR §761.61(a)(7). The TSCA Cap profile is shown on Figure 10 and the technical specifications for the asphalt and base material to be used is provided in Appendix E. As required by 40 CFR §761.61(a)(7), to the extent applicable to an asphalt cap, it will be designed and constructed in accordance with 40 CFR §264.310(a) and will comply with the permeability, sieve, liquid limit, and plasticity index parameters in §761.75(b)(1)(ii) through (b)(1)(v). In addition, cap source materials will not be contaminated at a level greater than 1 mg/kg PCB per Aroclor (or equivalent) or per congener.

3.2.8 Deed Restriction/Land use Covenant

Within 60 days after completion of the remediation and EPA approval of the Final Cleanup Completion 1 report, the land owner shall record a land use covenant and environmental restriction on the capped area that runs with the land, as permitted by California state law (a "Deed Restriction"). As required by 40 CFR §761.61(a)(8), the Deed Restriction will in perpetuity notify any potential purchaser of the property:

- That the designated land has been used for PCB remediation waste disposal and is restricted to use as a low occupancy area as defined in § 761.3 and may not be used for any residential use;
- That the designated land has been capped and the owner is required to maintain the cap to prevent human exposure to the underlying soils, and must begin repairs within 72 hours of discovery of any breaches in the cap which would impair the integrity of the cap or otherwise expose the capped soils;
- The applicable cleanup levels left at the site, under the cap;
- The capped land is restricted to use as a low occupancy area as defined in § 761.3;
- The groundwater at the Site shall not be used for any purpose;
- In the event there is any change in land use or to the cap that may result in increased exposure of potential receptors to the capped area, resulting in a change in status to a high occupancy area (as defined in 40 CFR 761.3), pursuant to 40 CFR 761.61(a)(4)(v), the owner is responsible to remediate the area to meet the high occupancy use standards in 40 CFR 761.61(a);
- The owner may elect to remove these restrictions by remediating the disposed PCB remediation waste to the otherwise applicable level, but only after obtaining EPA approval of the work pursuant to 40 CFR §761.61(a) or (c); and
- By purchasing or otherwise taking title to the property, the acquirer is assuming all these legal obligations, which are enforceable by EPA, SARWQCB, and the grantor and its legal successors.

In addition, the LUC will include the following:

- The USEPA RBDA approval letter and any amendments;
- Identification of a permanent public repository holding a copy of the Final EPA Approved Plan;

3-5 September 16, 2016

- Figures depicting location and concentrations of all PCBs remaining at the site;
- The type and detailed description of the cap or caps used; and
- A cap inspection schedule and maintenance plan.

3-6 September 16, 2016

4.0 REMEDIATION PROCEDURES

4.1 Verification Sampling and Quality Assurance/Quality Control Measures

Where required, verification sampling will be conducted to demonstrate that remedial efforts have been successful in removing any media with contaminant concentrations greater than 1 mg/kg total PCBs. In general, sampling points will be located on a systematic grid pattern overlaying the remediated area. The adequacy of cleanup will be based on the decision rules below:

- Decision Rule 1: If the concentrations of total PCBs in all confirmation samples are below the cleanup goal of 1 mg/kg, then no further excavation/scarification will be required.
- Decision Rule 2: If the total PCB concentrations in one or more samples exceed 1 mg/kg but is less than or equal to two times the cleanup goal of 1 mg/kg, then the exposure point concentration (EPC) (the lower of 95% UCL or the maximum concentration) will be calculated. If the EPC for the excavation/remediation area is less than the cleanup goal of 1 mg/kg, then no further excavation/scarification will be required.
- Decision Rule 3: If the total PCB concentrations in the confirmation samples exceed two times the cleanup goal of 1 mg/kg in one or more samples, and the EPC for the remediation area is greater than the cleanup goal of 1 mg/kg, then the area around that sample point(s) exceeding the goal will be further excavated/scarified (as applicable) and resampled to verify that the attainment goals consistent with Decision Rules 1 and 2 above.

4.1.1 Determination of Required Number of Soil and Concrete Confirmation Samples

Under a Risk Based Disposal Approval, verification sampling to demonstrate attainment of cleanup goals can be based on statistical methods. Statistical tools found in ProUCL Software (Version 5.1) were used to calculate the required number of verification samples to a 95 percent confidence for each distinct remediation area (survey unit); namely, the soil removal and the concrete removal areas. In this case, the Wilcoxon Signed Rank Test was used for hypothesis testing. The required number of samples to conduct a Wilcoxon Signed Rank Test was calculated assuming certain values for standard deviation and width of the "gray region" for the total PCBs.

Standard deviation for total PCBs following excavation was approximated using the following formula (U.S. EPA 1989):

Standard Deviation = (Maximum Expected Value – Minimum Expected Value)/6

The maximum expected value for total PCBs was assumed to be equal to the remediation goal of 1 mg/kg. The minimum expected concentration for total PCBs was assumed to be equal to its typical laboratory reporting limit of the most prevalent PCB, Aroclor 1248, of 0.05 mg/kg.

The width of the gray region was assumed to be equal to one-half of the calculated standard deviation. Using the false rejection and false acceptance errors of 5 percent and 20 percent, respectively, the required

number of minimum samples was calculated to be 31. Discrete verification samples will be collected systematically to ensure complete coverage of each survey unit.

4.1.2 Soil Verification Sampling

Verification samples will be collected after removal of 1-foot of soil from outside the footprint of the former Die Cast Building and from below the asphalt area to the west/southwest. This verification sampling will focus on delineating lateral limits of soils with greater than 1 mg/kg Total PCBs. Verification samples will be collected in the areas on Figure 8 with purple stripes. The areas on Figure 8 with orange stripes will not be sampled as this area represents the TSCA Cap footprint and is known to have Total PCBs greater than 1 mg/kg. As shown on Figure 8, approximately 50 verification samples will be collected in general on 30 feet centers. In select areas where the excavation depths exceed 1 foot, sidewall samples will be collected. The extent of the cap shown on Figure 8 will be refined based on the verification sampling results.

4.1.3 East Building Concrete Verification Sampling

As described in section 3.4, if the removal of PCBs from the concrete surface is performed (scarification of the upper 1"), verification sampling will be performed to demonstrate that any residual total PCBs in the concrete are less than 1 mg/kg. As described above, to achieve a 95 percent confidence, a minimum of 31 samples will be required to demonstrate attainment of the remediation goal. Based on the characterization performed to date, approximately 210,000 square feet of the East Building will require scarification. A total of 86 samples will be collected. This equates to four samples within each of the 21 grids/areas shown on Figure 9 that will undergo scarification.

4.2 Analytical Methodology

All soil PCB samples will be extracted according SW-846 Method 3540C (Soxhlet Extraction) and analyzed according to SW-846 Method 8082, per 40 CFR 761.272.

The nominal reporting detection limit for each Aroclor will be less than 0.050 mg/kg for all solid matrices unless dilutions are required due to PCB detection. All sample concentrations will be reported on a dry weight basis in accordance with §761.274.

4.3 Waste Storage, Handling and Disposal

Wastes classified as Bulk PCB Remediation Waste will be handled and stored as described in this section. All PPE used during remediation shall be containerized with the PCB wastes with which they were generated for disposal. PPE used during decontamination of mobile equipment, tools, and machinery, as described in Section 4.4, shall also be containerized with PCB wastes for disposal. Solid wastes generated during the remediation activities (e.g., soil, concrete) will be handled, stored, and disposed of as Bulk PCB Remediation Waste and shall be placed directly into lined storage containers or lined laydown areas. The

Die Cast Building materials, the excavated soil, asphalt, and concrete will be handled, stored, and disposed of as PCB Remediation Wastes. The temporary storage of remediation wastes will be in accordance with provisions at 40 CFR 761.65(c)(9) or as modified under 40 CFR 761.65(c)(9)(iv) (risk-based alternative storage procedures).

Based on the sampling methodology performed, where there is sufficient data to segregate the remediation waste (soil, concrete and asphalt) into stockpiles of less than 50 mg/kg and greater than 50 mg/kg, PCB Bulk Remediation Waste containing less than 50 mg/kg shall be segregated from other waste and disposed of in accordance with \$761.61(a)(5)(i)(B)(2)(ii) and \$761.61(a)(5)(v)(A) (municipal solid waste landfill). Bulk PCB Remediation Waste containing greater than 50 mg/kg PCBs shall be disposed of in accordance with \$761.61(a)(5)(i)(B)(2)(iii) (RCRA hazardous waste facility or TSCA chemical waste landfill). The PCB Bulk Product waste will be disposed of in accordance with \$761.62 and Excluded PCB Products will be disposed of at a solid waste landfill that can accept PCB waste at concentrations less than 50 mg/kg. The receiving facilities have not been selected yet.

Upon first use of a storage container, the container shall be labeled and the date of storage will be recorded on the container by the field inspector. Each waste storage container shall be removed from the Site within 90 days of its first use.

A waste storage area shall be created for the storage of the waste containers prior to their transport off-Site. The waste storage area will be surrounded by temporary fencing and signs will be posted on the presence of PCB-containing waste. All lined storage containers, laydown areas or drums not actively in use shall be staged within the waste storage area and covered with a tarp or otherwise sealed to prevent storm water from entering the container.

The contractor will comply with all applicable federal, state and local regulations in the storage, handling and disposal of all PCB wastes generated during the implementation of this work plan.

4.4 **Equipment Decontamination**

Moveable equipment, tools, and machinery that contact PCBs will be decontaminated using the procedures as defined in §761.79(c)(2). Specifically, equipment, tools and machinery that are visually clean will be swabbed with an organic decontamination solvent specified in §761.79(c)(3)(iv); or will be subject to a double wash/rinse as defined in 40 CFR 761 Subpart S. Grimy non-porous surfaces will be decontaminated following the double wash/rinse procedures specified in §761.375. PCB Containers (drums or other containers whose surface has been in direct contact with PCBs) will be decontaminated by flushing the internal surfaces of the container three times with a solvent containing less than 50 mg/kg PCBs. A decontamination solvent may be reused so long as its PCB concentration is less than 50 mg/kg. Decontaminated equipment may be reused in accordance with 40 CFR §761.30(u). Decontamination solvents and equipment will be stored for reuse in accordance with 40 CFR §761.35. Decontamination

solids (<u>e.g.</u>, rags, brushes) will be containerized with the PCB Remediation Wastes for disposal. Decontamination liquids shall be drummed separately and tested for appropriate disposal.

4.5 Air Monitoring

Air monitoring will also be performed to identify the extent of any transport of PCB-impacted dust from removal areas. Air monitoring will be performed to comply with the South Coast Air Quality Management District (SCAQMD) Rule 403 on fugitive emissions. In compliance with Rule 403, during construction activities, visible emissions will be controlled and monitored in accordance with the best practices summarized in Table 1 of Rule 403. These best practices will ensure that PM10 levels are less than 50 micrograms per meter cubed and visible dust emissions are less than opacity of 20 percent. Monitoring to document that these provisions are met will be conducted specified in the Rule 403 Implementation Handbook. In addition, inhalation exposure limits established by the OSHA Permissible Exposure Levels (Table Z-1) will be used to protect Site workers.

4.6 Contingency Plans

This RBDA application presents the intended approach for achieving the remediation objectives (no unreasonable risk to human health or the environment), including in some cases alternative remedies and contingency plans. However, in the event that field conditions may warrant and adapting approaches different from those prescribed in this plan, ITT will obtain EPA approval of amended procedures. All changes in the approach will be documented and included in the Construction/Remediation Completion Report.

4.7 Remediation Schedule

After EPA approval of the RBDA, a qualified remedial contractor will perform the work. Any alternate approaches to this project that arise will be presented to EPA as necessary. Once initiated, the work will progress in single 8-hour shifts over an estimated 4- to 6-month period.

5.0 REMEDIAL DOCUMENTATION

The construction contract will require that documentation of the field activities be performed on a daily basis by the remediation contractor during the performance of the PCB remediation activities. The field activities will be summarized at the conclusion of the remediation in a Remedial Action Completion (RAC) Report.

5.1 Field Inspection

The contractor will maintain a daily log of on-Site activities. That log will include, but not be limited to the following:

- Health and safety meetings,
- Personnel and equipment on Site,
- Field procedures and observations,
- Remediation progress and extents,
- Inventory of waste generated, (date generated, date removed from site)
- Sample locations selection criteria, samples collected, analyses performed, and sample handling,
- Telephone or other instructions,
- Equipment decontamination,
- Building structure substrate verification testing,
- Waste transporter information.

5.2 Photographs

Photographs will be taken of representative activities, such as building demolition, pavement removal, soil excavation, and verification sample locations. Copies of selected photographs will be included in the RAC Report.

5.3 Transport and Treatment/Disposal Certifications

Manifests and/or Bills of Lading for the transportation, treatment and disposal of waste materials and certifications of the treatment or disposal of the wastes, if necessary, will be obtained from the transporter and from the treatment/disposal facility. Copies of these forms will be included in the RAC Report.

5.4 Report

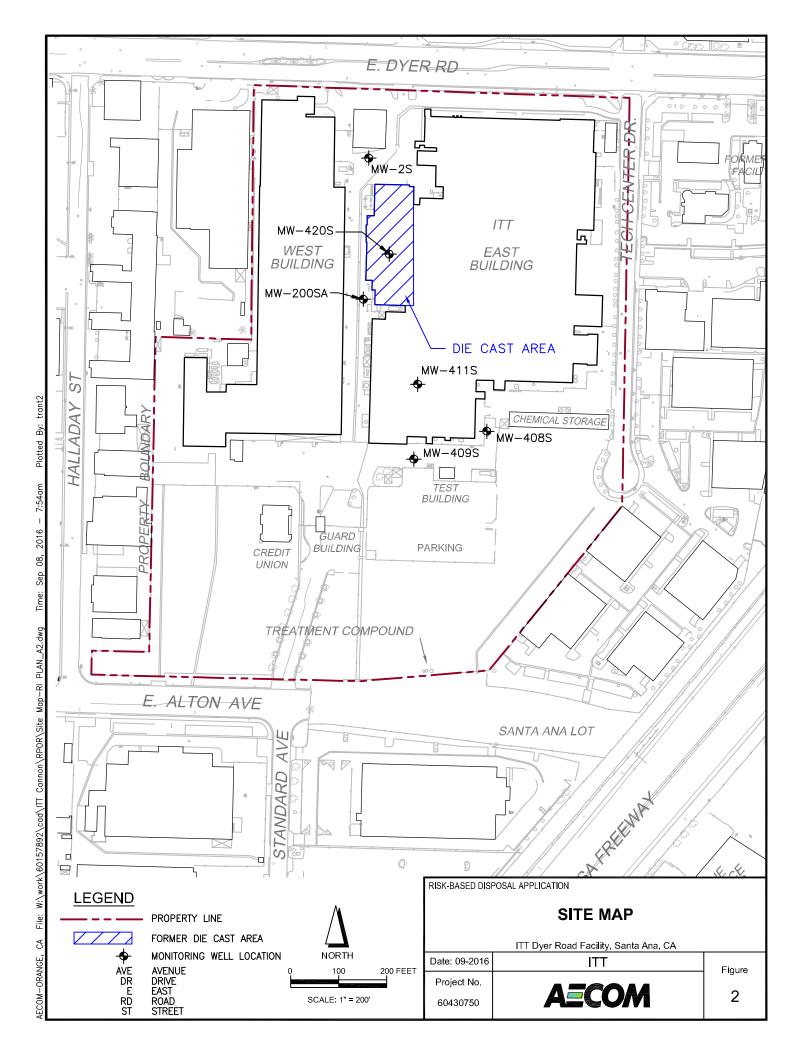
The RAC Report will be prepared by the Contractor upon receipt of all analytical data confirming that the remedial action is complete and receipt of certifications of treatment/disposal from the treatment/disposal

facility. The RAC Report will document all information listed in 40 CFR 761.61(a)(9) and 761.25(c)(5), including the following information:

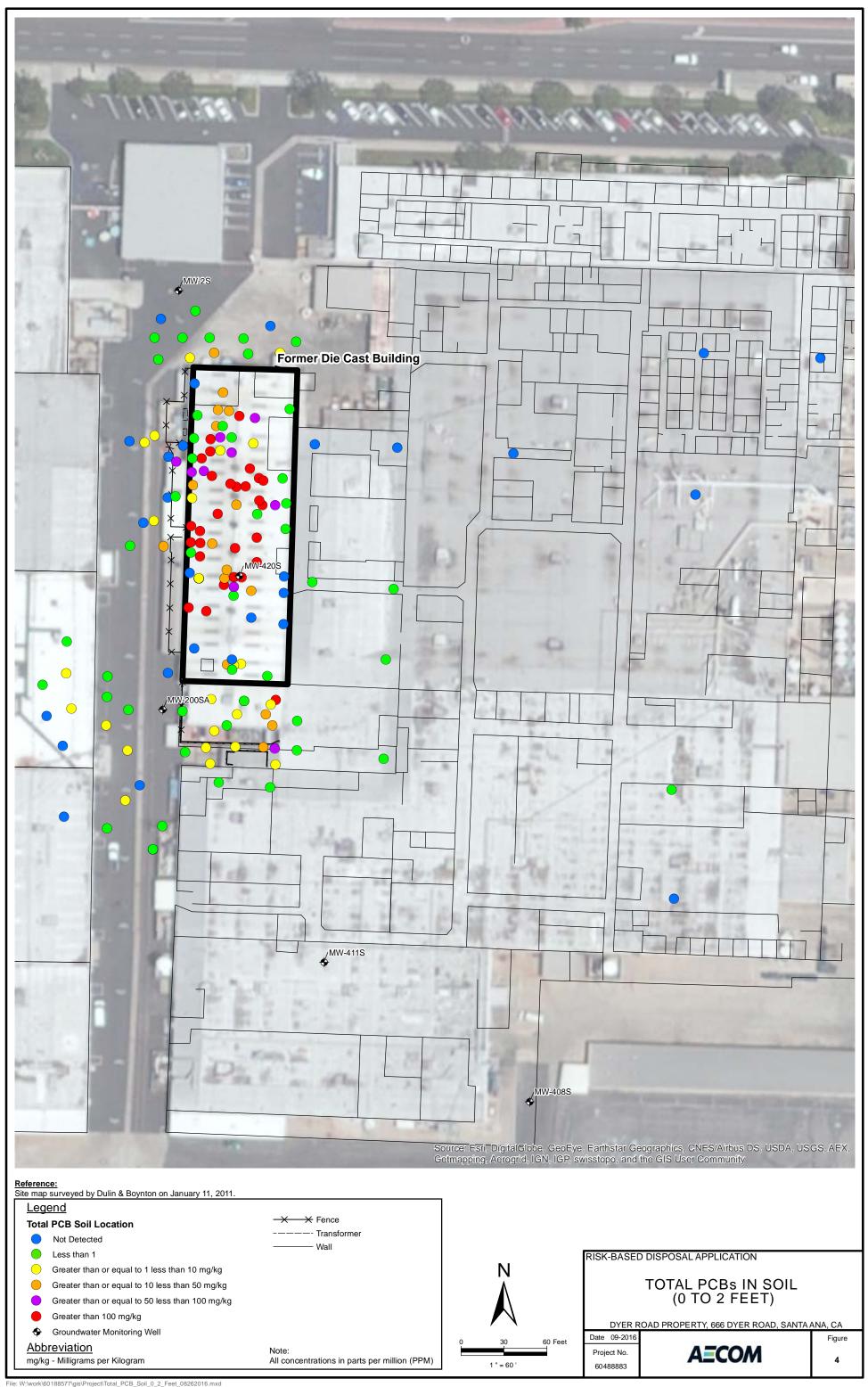
- Site description and discussion of project activities;
- A description of field procedures, including decontamination methods;
- Verification sample locations and analytical results;
- Discussion of the data quality and quality assurance and quality control (QA/QC) results;
- A photographic record of the remediation;
- Waste characterization sample data, including chain of custody forms;
- Volume of PCB wastes removed and disposed off-Site;
- Waste transport and treatment disposal information; and
- Copies of waste manifests and bills of lading.

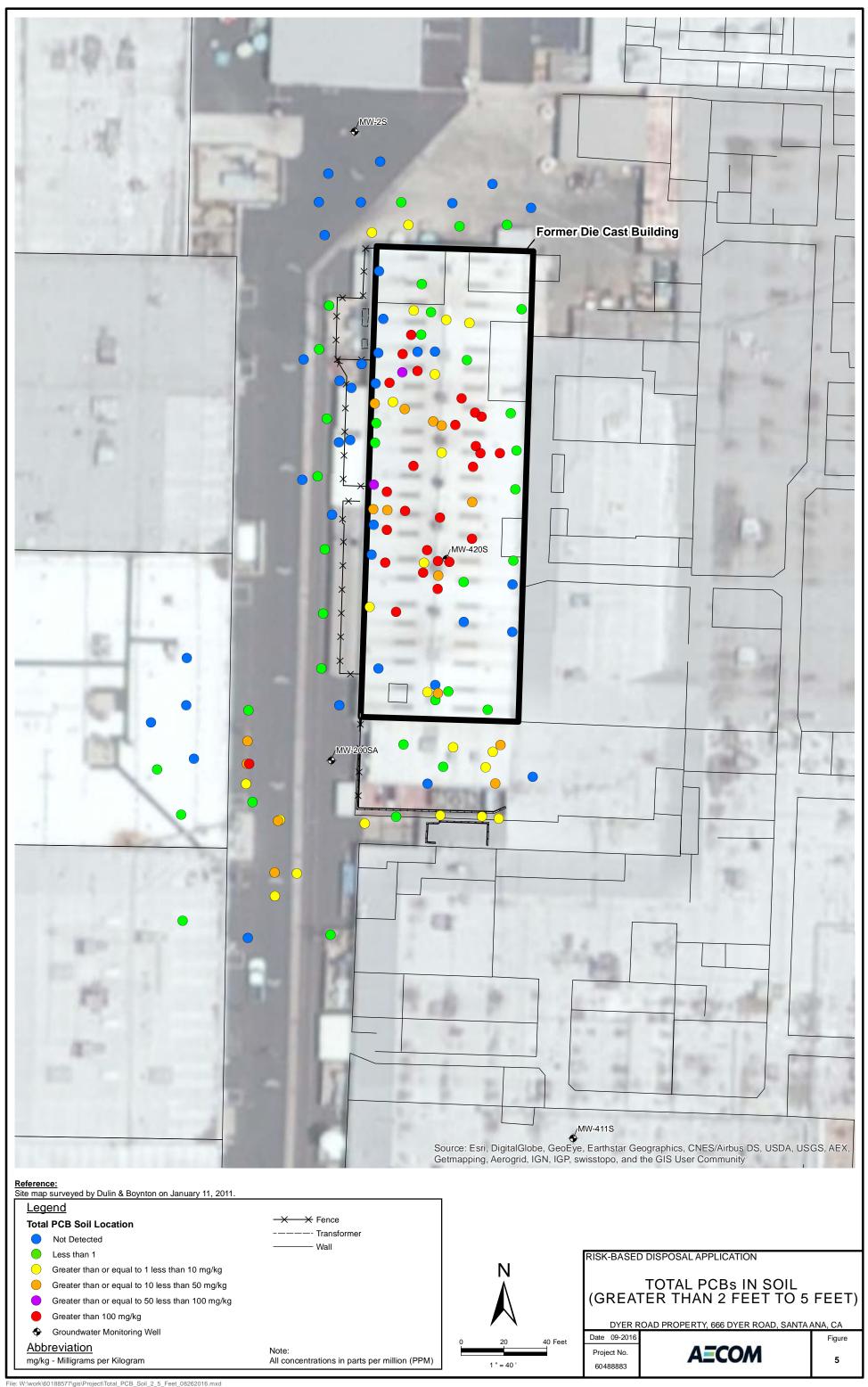
The Contractor will prepare and maintain all records and documents required by 40 CFR Part 761, including all those records required under Subpart J (General Records and Reports) and Subpart K (PCB Waste Disposal Records and Reports), as applicable to the proposed remedial activities. The records shall be maintained in a centralized location until such time as the USEPA approves in writing a request for an alternative disposition of such records. All records will be made available for inspection by authorized representatives of USEPA.

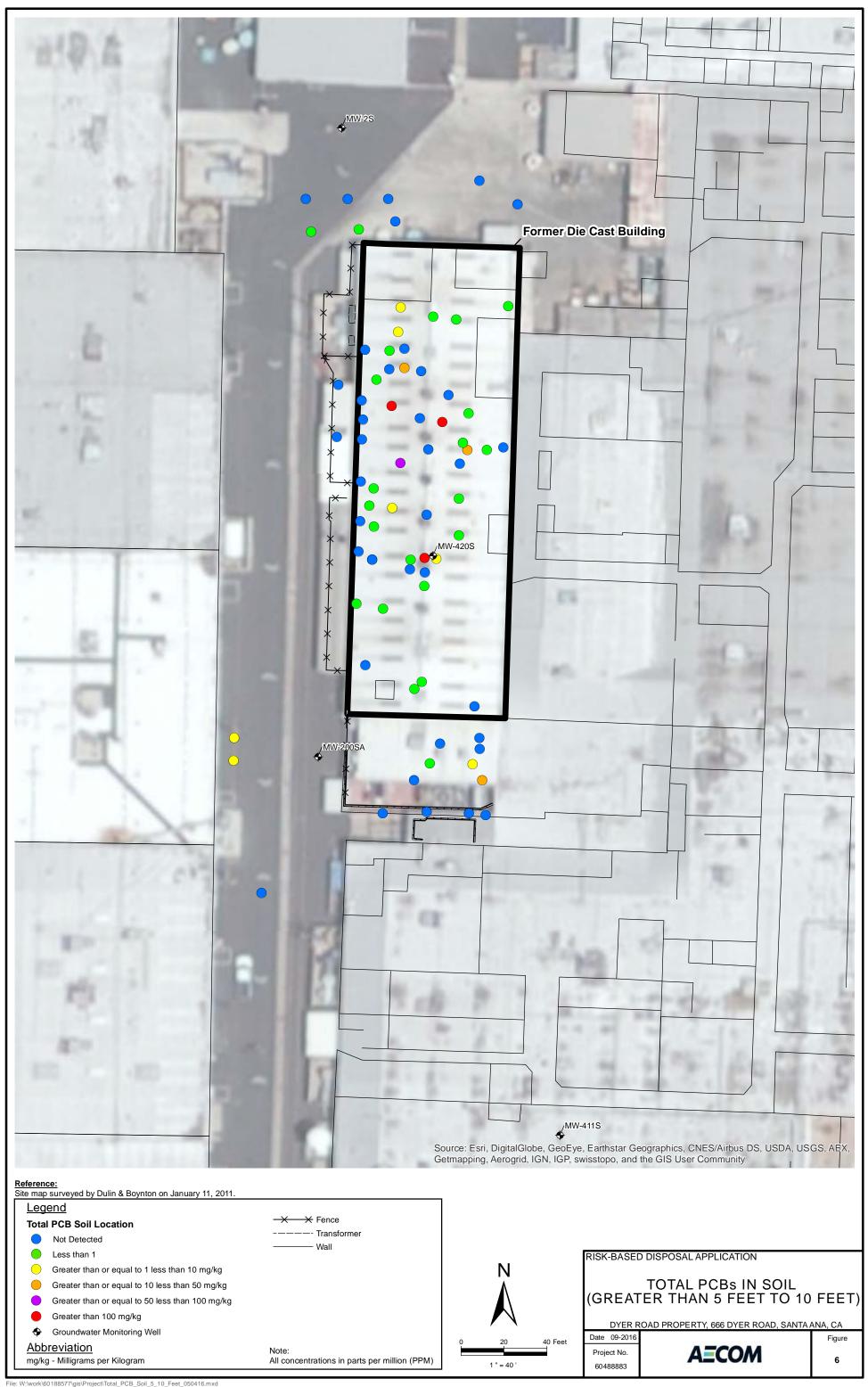
The RAC Report will be submitted to USEPA in both hard copy and electronic copy within 120 days of completion of the activities described in this work plan.


5-2 September 16, 2016

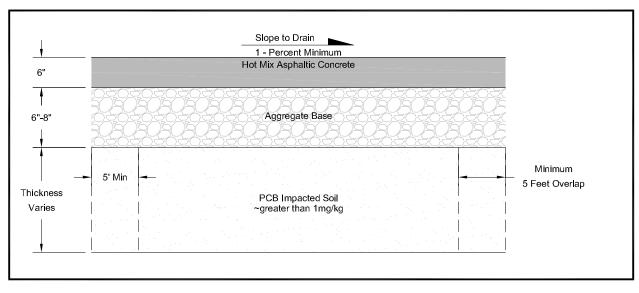
6.0 REFERENCES


- AECOM, 2012. Remedial Investigation Addendum Report: East Building Die Cast Area, ITT Dyer Road Facility, Santa Ana, California. May 1.
- AECOM, 2013. 2012 Additional Sampling Report, East Building Die Cast Area, ITT Dyer Road ICS Facility, 666 East Dyer Road, Santa Ana, California. January 25.
- AECOM, 2014a. 2014 Die Cast Area Supplemental Sampling Report, East Building Former Die Cast Area, ITT Dyer Road ICS Facility, 666 East Dyer Road, Santa Ana California. May 28.
- AECOM, 2014b. Supplemental Sampling Work Plan and Response to Comments from the Santa Ana Regional Water Quality Control Board on the 2014 Die Cast Area Supplemental Sampling Report, East Building Former Die Cast Area, ITT Dyer Road Facility, 666 East Dyer Road, Santa Ana, California. July 14.
- ATSDR, 2000. Agency for Toxic Substances and Disease Registry. 2000. *Toxicological profile for Polychlorinated Biphenyls (PCBs)*. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- Leighton and Associates, Inc, November 1987. Revised Phase I Site Assessment of Subsurface Soil Contamination by PCB's at ITT Cannon's Die Cast Facility. November 3.
- Leighton and Associates, Inc, September 1988. *Report for a Phase II Assessment Regarding PCBs In Soil.* September 12.


Risk-Based Disposal Approval Application East Building Die Cast Area 666 East Dyer Road Santa Ana, California


FIGURES





Cap Cross-Section

PCB Cap Cross Section

Date 09-2016
Project No. 60319563

PRISK-BASED DISPOSAL APPLICATION

Figure 10

Risk-Based Disposal Approval Application East Building Die Cast Area 666 East Dyer Road Santa Ana, California

APPENDIX A

PCB SAMPLE RESULTS IN CONCRETE/ASPHALT, SOIL, AND GROUNDWATER

Sample ID Medium Lab Sample ID Date Collected		SB-1-CS-top Concrete 115572-004 12/23/10	SB-1-CS-mid Concrete 115572-005 12/23/10	SB-1-CS-bottom Concrete 115572-006 12/23/10	SB-05-CS-Top Concrete 115572-034 12/23/10	SB-05-CS-Mid Concrete 115572-035 12/23/10	SB-05-CS-Bottom Concrete 115572-036 12/23/10	SB-06-CS-Top Concrete 115572-001 12/23/10	SB-06-CS-Mid Concrete 115572-002 12/23/10	SB-06-CS-Bottom Concrete 115572-003 12/23/10	SB-12-CS-Top Concrete 12/28/10	SB-12-CS-Mid Concrete 12/28/10	SB-12-CS-Bottom Concrete 12/28/10
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)						•			•			
Aroclor-1016		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1221		< 0.25	< 0.25	< 3.3	< 1600	< 330	< 660	< 6.6	< 3.3	< 6.6	< 3.3	< 3.3	< 3.3
Aroclor-1232		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1242		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1248		0.319	0.173	13	6700	< 160	4100	37	24	37	310 /B/V	53 /B/V	260 /B/V
Aroclor-1254		< 0.25	< 0.25	< 1.6	< 820	1700	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1260		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1262		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Aroclor-1268		< 0.25	< 0.25	< 1.6	< 820	< 160	< 330	< 3.3	< 1.6	< 3.3	< 1.6	< 1.6	< 1.6
Total PCBs	1	0.319	0.173	13	6700	1700	4100	37	24	37	310	53	260

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criteria.
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Sample ID Medium Lab Sample ID		SB-15-CS-Top Concrete	SB-15-CS-Mid Concrete	SB-15-CS-Bottom Concrete	SB-16-CS-top Concrete	SB-16-CS-mid Concrete	SB-16-CS-bottom Concrete	SB-18-CS-Top Concrete	SB-18-CS-Mid S Concrete	SB-18-CS-Botton Concrete	SB-22-CS-Top Concrete	SB-22-CS-Mid Concrete	SB-22-CS-Bottom Concrete
Date Collected	Criteria*	12/28/10	12/28/10	12/28/10	12/23/10	12/23/10	12/23/10	12/28/10	12/28/10	12/28/10	12/23/10	12/23/10	12/23/10
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)												
Aroclor-1016		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16 /M/M
Aroclor-1221		< 33	< 3.3	< 3.3	< 330	< 660	< 330	< 3.3	< 0.33	< 0.1	< 330	< 16	< 0.33
Aroclor-1232		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16
Aroclor-1242		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16
Aroclor-1248		360 /B/V	82 /B/V	71 /B/V	2100	2900	1600 /J/I	11 /B/V	0.8 /B/V	0.3 /B/V	2300	81	110
Aroclor-1254		< 16	< 1.6	< 1.6	< 160	< 330	< 160	11	0.71	0.1	< 160	< 8.2	< 0.16
Aroclor-1260		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16 /M/M
Aroclor-1262		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16
Aroclor-1268		< 16	< 1.6	< 1.6	< 160	< 330	< 160	< 1.6	< 0.16	< 0	< 160	< 8.2	< 0.16
Total PCBs	1	360	82	71	2100	2900	1600	22	1.51	0.4	2300	81	110

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR
- Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.
- bgs = below ground surface
- mg/kg milligrams per kilogram
- ND Not Detected
- Bold font and shading indicates the analyte was detected.
- Bold outline indicates the concentration exceeds the screening criterion.
- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID Medium Lab Sample ID	Screening	SB-42-CS-Top Concrete 12/28/10	SB-42-CS-Mid Concrete 12/28/10	SB-42-CS-Bottom Concrete 12/28/10	SB-43-CS-Top Concrete 12/23/10	SB-43-CS-Mid Concrete 12/23/10	SB-43-CS-Bottom Concrete 12/23/10	SB-46-CS-Top Concrete 12/28/10	Concrete	SB-46-CS-Bottom Concrete 12/28/10	SB-48-CS-Top Concrete 12/23/10	SB-48-CS-Mid Concrete 12/23/10
Polychlorinated Biphenyls by Method 8		12/28/10	12/28/10	12/28/10	12/23/10	12/23/10	12/23/10	12/28/10	12/28/10	12/28/10	12/23/10	12/23/10
	0002 (Hig/Kg)	16	. 16	. 16	820	2 920	. 02	< 820	. 16	< 82	. 16	. 16
Aroclor-1016		< 16	< 1.6	< 1.6		< 820	< 82		< 1.6	_	< 1.6	< 1.6
Aroclor-1221		< 33	< 3.3	< 3.3	1600	< 1600	< 160	< 1600	< 3.3	< 160	< 3.3	< 3.3
Aroclor-1232		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Aroclor-1242		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Aroclor-1248		2000 /B/V	300 /B/V	9600 /B/V	9600	7600	830	8500 /B/V	290 'B/V	820 /B/V	180	470
Aroclor-1254		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Aroclor-1260		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Aroclor-1262		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Aroclor-1268		< 16	< 1.6	< 1.6	820	< 820	< 82	< 820	< 1.6	< 82	< 1.6	< 1.6
Total PCBs	1	2000	300	9600	9600	7600	830	8500	290	820	180	470

Notes:

 $\ensuremath{^*}$ - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

			SB62-CS-	SB62-CS-	SB62-CS-	SB62-CS-	SB63-CS-	SB63-CS-	SB64-CS-	SB64-CS-	SB65-CS-	SB66-CS-	SB66-CS-	SB67-CS-	SB67-CS-	SB68-CS-	SB68-CS-	SB69-CS-
Sample ID		SB-48-CS-Bottom	Bottom	Bottom-a	TOP	TOP-A	Bottom	TOP	Bottom	TOP	TOP	Bottom	TOP	Bottom	TOP	Top	Top-a	Top
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Lab Sample ID	Screening		64264.05	64264.06	64252.04	64252.05	64264.03	64252.08	64264.07	64252.06	64252.03	64252.13	64252.07	64252.15	64252.14	64264.08	64264.09	64264.1
Date Collected	Criteria*	12/23/10	28-Dec-11	28-Dec-11	27-Dec-11	27-Dec-11	28-Dec-11	27-Dec-11	28-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)																	
Aroclor-1016		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	<2.5	<2.5	< 0.05
Aroclor-1221		< 3.3	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	<2.5	<2.5	< 0.05
Aroclor-1232		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 2.5	< 2.5	< 0.05
Aroclor-1242		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 2.5	< 2.5	< 0.05
Aroclor-1248		1400	0.319	0.173	0.282	0.219	0.286	0.486	0.355	0.103	0.231	0.548	0.744	0.547	12.8	60.8	79.5	0.328
Aroclor-1254		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	<2.5	< 2.5	< 0.05
Aroclor-1260		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 2.5	< 2.5	< 0.05
Aroclor-1262		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 2.5	<2.5	< 0.05
Aroclor-1268		< 1.6	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	<2.5	<2.5	< 0.05
Total PCBs	1	1400	0.319	0.173	0.282	0.219	0.286	0.486	0.355	0.103	0.231	0.548	0.744	0.547	12.8	60.8	79.5	0.328

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

		SB70-CS-	SB70-CS-	SB71-CS-	SB72-CS-	SB73-CS-	SB73-CS-	SB74-CS-	SB74-CS-	SB75-CS-	SB75-CS-			SB77-CS-		SB78-CS-			SB80-CS-
Sample ID		Bottom	TOP	Top	Top	Bottom	TOP	Bottom	TOP	Bottom	TOP	SB76-CS	SB77-CS	Bottom	SB78-CS	Bottom	SB79-CS	SB80-CS	Bottom
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete										
Lab Sample ID	Screening	64252.1	64252.09	64264.11	64264.12	64252.17	64252.16	64252.12		64252.01						67207_11			
Date Collected	Criteria*	27-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Oct-12	27-Oct-12	27-Oct-12	23-Oct-12	19-Oct-12	15-Oct-12	17-Oct-12	17-Oct-12
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1248		6.34	45.2	2.36	3.62	11100	446	44.8	4080	203	186	0.407	0.577	< 0.05	156	0.0847	1050	33.7	0.0792
Aroclor-1254		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0911	0.161	< 0.05	34.9	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05 /J/E	<0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Total PCBs	1	6.34	45.2	2.36	3.62	11100	446	44.8	4080	203	186	0.4981	0.738	ND	190.9	0.0847	1050	33.7	0.0792

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

				SB82-CS-										SB91-CS-			SB92-CS-		
Sample ID		SB81-CS	SB82-CS	Bottom	SB83-CS	SB84-CS	SB85-CS	SB86-CS	SB87-CS	SB88-CS	SB89-CS	SB90-CS	SB91-CS	Bottom	SB92-CS	SB92-CS-a	Bottom	SB93-CS	SB93-CS-a
Medium		Concrete	Concrete																
Lab Sample ID	Screening	67302_06	67142_02	67209_10	67142_03	67142_04	67142_15	67302_02	67193_02	67193_01	67142_17	67142_16	67142_10	67142_09	67209_01	67209_02	67259_03	67209_03	67209_04
Date Collected	Criteria*	27-Oct-12	15-Oct-12	18-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	27-Oct-12	17-Oct-12	17-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	18-Oct-12	18-Oct-12	23-Oct-12	18-Oct-12	18-Oct-12
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)																		
Aroclor-1016		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.25	1120	3.86	1210	1520	413	< 0.25	1050	747	164	192	107	2.06	4.43 /J/A	2.83	0.0668	0.75 /J/A	1.2
Aroclor-1254		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	1.67 /J/A	1.01	< 0.05	0.615 /J/A	0.956
Aroclor-1260		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.25	< 0.5	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	ND	1120	3.86	1210	1520	413	ND	1050	747	164	192	107	2.06	2.1	3.84	0.0668	1.37	2.156

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

		SB93-CS-	SB93-CS-		SB94-CS-		SB95-CS-			SB97-CS-									SB105-CS-
Sample ID		Bottom	Bottom	SB94-CS	Bottom	SB95-CS	Bottom	SB96-CS	SB97-CS	Bottom	SB98-CS	SB99-CS	SB100-CS	SB101-CS	SB102-CS	SB103-CS	SB104-CS	SB105-CS	Bottom
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete								
Lab Sample ID	Screening	67210_13	67243_14	67209_05	67243_15	67259_01	67259_02	67142_14	67142_07	67142_08	67142_13	67142_05	67142_01	67142_11	67302_17	67302_16	67302_07	67259_04	67243_12
Date Collected	Criteria*	19-Oct-12	23-Oct-12	18-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	15-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	23-Oct-12	23-Oct-12
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	<0.5 /M/MD	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1248		0.496	1020	2.05	45	42.4	28.2	43.8	3700	322	1040 /J/I	1020	143	116	< 0.5	< 0.5	< 0.5	0.997	1.06
Aroclor-1254		< 0.05	< 0.05	5.88	< 0.05	10.7	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.527	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	<0.5 /M/M	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05
Total PCBs	1	0.496	1020	7.93	45	53.1	28.2	43.8	3700	322	1040	1020	143	116	ND	ND	ND	1.524	1.06

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

				SB106-CS-												
Sample ID		SB106-CS	SB106-CS-a	Bottom	SB107-CS	SB108-CS	SB109-CS	SB110-CS	SB111-CS	SB-112-Surface	SB-114-Surface	SB-115-Surface	SB-115-Surface-a	SB-117-Surface	SB-117-Surface-a	SB-118-Surface
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Concrete
Lab Sample ID	Screening	67243_16	67243_17	67243_13	67259_05	67335_04	67335_03	67335_02	67335_01	14-04-0671-44	14-04-0671-40	14-04-0671-34	14-04-0671-35	14-04-0671-21	14-04-0671-22	14-04-0671-30
Date Collected	Criteria*	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	31-Oct-12	31-Oct-12	31-Oct-12	31-Oct-12	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)															
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1248		13.4	13.2	18.5	11.5	16.2	20.8	9.27	0.782	2.9	0.27	1.6 /J/A	4.1	16	12	35
Aroclor-1254		4.79	4.37	< 0.05	3.54	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	1.3	1.2	5.6
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.99	< 0.1	< 0.99	< 0.99	< 1	< 0.99	< 5
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA	NA	NA	NA
Total PCBs	1	18.19	17.57	18.5	15.04	16.2	20.8	9.27	0.782	2.9	0.27	1.6	4.1	17.3	13.2	40.6

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID Medium		SB-119-Surface Concrete	SB-120-Surface Asphalt	SB-121-Surface Asphalt	SB-121-Surface-a Asphalt	SB-122-Surface Concrete	SB-124-Surface Concrete	SB-125-Surface Concrete	SB-126-Surface Concrete	SB-127-Surface Concrete	SB-128-Surface Concrete	SB-129-Surface Concrete	SB-130-Surface Concrete	SB-131-0.05 Asphalt
Lab Sample ID		14-04-0671-24	14-04-0671-1	14-04-0671-3	14-04-0671-7	14-04-0671-17	14-04-0671-28		14-04-0671-45			14-04-0671-33		74445.05
Date Collected	Criteria*	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	09/18/14
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)													
Aroclor-1016		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	< 0.5	< 5	< 5	< 0.5
Aroclor-1221		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	< 0.5	< 5	< 5	< 0.5
Aroclor-1232		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	< 0.5	< 5	< 5	< 0.5
Aroclor-1242		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	< 0.5	< 5	< 5	< 0.5
Aroclor-1248		37	0.9	0.31	0.35	0.45	18	74	310 /J/I	0.11	< 0.5	720	480	< 0.5
Aroclor-1254		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	2.8	< 5	< 5	< 0.5
Aroclor-1260		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	20 /J/I	< 0.05	< 0.5	27	27	< 0.5
Aroclor-1262		< 5	< 0.1	< 0.1	< 0.05	< 0.05	< 5.1	< 5	< 5	< 0.05	< 0.5	< 5	< 5	< 0.5
Aroclor-1268		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5
Total PCBs	1	37	0.9	0.31	0.35	0.45	18	74	330	0.11	2.8	747	507	ND

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID Medium Lab Sample ID Date Collected	Screening Criteria*	SB-132-0.05 Concrete 74445.06 09/18/14	SB-133-0.05 Concrete 74445.09 09/18/14	SB-134-0.05 Asphalt 74445.01 09/18/14	SB-135-0.05 Asphalt 74445.12 09/18/14	SB-136-0.05 Asphalt 74445.13 09/18/14	SB-137-0.05 Asphalt 74445.17 09/18/14	SB-138-0.05 Asphalt 74445.21 09/18/14	SB-139-0.05 Concrete 74445.24 09/18/14	SB-140-0.05 Concrete 74445.25 09/18/14	SB-141-0.05 Concrete 74445.26 09/18/14	SB-142-0.5 Concrete 74445.29 09/18/14	SB-144-0.5 Asphalt 77385.20 06/17/15	SB-145-0.5 Asphalt 77385.18 06/17/15
Polychlorinated Biphenyls by Method 8	082 (mg/kg)													
Aroclor-1016		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1221		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1232		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1242		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1248		57.7	45.7	0.65	1.82	0.34 J	0.59	0.35 J	32.20	42.60	0.05	0.04 J	0.606	0.403
Aroclor-1254		40.4	30.7	< 0.5	1.07	< 0.5	0.48 J	< 0.5	13.30	17.50	< 0.05	< 0.05	0.337	0.131 J
Aroclor-1260		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1262		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Aroclor-1268		< 0.05	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.125	< 0.125
Total PCBs	1	98.1	76.4	0.65	2.89	0.34	1.06	0.35	45.5	60.1	0.05	0.04	0.943	0.534

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID Medium Lab Sample ID Date Collected		SB-146-0.5 Asphalt 77385.15 06/17/15	SB-148-0.5 Asphalt 77385.03 06/17/15	SB-149-0.5 Asphalt 77385.09 06/17/15	SB-151-0.05 Asphalt 78682.05 10/15/15	SB-152-0.05 Asphalt 78682.04 10/15/15	SB-153-0.05 Asphalt 78682.05 10/15/15	SB-154-0.05 Asphalt 78682.02 10/15/15	SB-155-0.05 Asphalt 78682.03 10/15/15	SB-157-0.05 Concrete 80593.10 03/10/16	SB-158-0.05 Concrete 80593.03 03/10/16	SB-160-0.05 Asphalt 80592.06 03/10/16	SB-160-0.05-a Asphalt 80592.07 03/10/16	SB-161-0.05 Asphalt 80592.02 03/10/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)													
Aroclor-1016		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1221		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1232		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1242		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1248		0.280	0.393	0.620	0.798	0.417	0.331	0.194 J	0.605	0.0987	< 0.05	0.21	< 0.5	0.0917
Aroclor-1254		0.131 J	0.232 J/	0.379	0.338	0.223 J	0.193 J	0.130 J	0.273	0.0793	< 0.05	0.05	< 0.5	< 0.5
Aroclor-1260		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1262		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aroclor-1268		< 0.125	< 0.125	< 0.125	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Total PCBs	1	0.411	0.625	0.999	1.136	0.640	0.52	0.32	0.878	0.178	ND	0.21	ND	0.0917

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-161-0.05-a	SB-162-0.05	SB-162-0.05-a	SB-163-0.05	SB-163-0.05-a	SB-164-0.05	SB-164-0.125	SR-165-0.05	SB-166-0.05	SB-167-0 05	SB-168-0.05	SB-169-0.05	SR-169-0 125	5 SB-170-0.05
Medium		Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Lab Sample ID	Screening	80592.03	80592.19	80592.20	80592.13	80592.14	80593.33	81378.09	80593.31	80593.32	80593.20	80593.18	80593.02	81378.08	80593.06
Date Collected	Criteria*	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/27/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/27/16	03/10/16
Polychlorinated Biphenyls by Method 80	082 (mg/kg)					•	•						•	•	•
Aroclor-1016		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 / R/G	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.5	0.189 J	0.325	< 0.5	0.956	68	< 0.05	132	6.88	13.5	12.8 /J/G	23.8	0.0800	24.9
Aroclor-1254		< 0.5	0.222 Ј	0.380	< 0.5	0.876	34.8	< 0.05	96.5	10.7	16.5	6.14 /J/G	35.8	0.0923	20.0
Aroclor-1260		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.5	< 0.25	< 0.25	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	5.68	< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05
Total PCBs	1	ND	0.411	0.705	ND	1.83	103	ND	229	23.3	30	18.9	59.6	0.172	44.9

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

		~~ .=	a= 1== 0.0	a= .==		an	~~	~~	~~	a=	~~		~~	a= 10100	~~	- 100 0 0 T
Sample ID		SB-171-0.05	SB-172-0.05	SB-173-0.05	SB-174-0.05	SB-175-0.05	SB-176-0.05	SB-180-0.05	SB-181-0.05	SB-182-0.05	SB-183-0.05	SB-184-0.05	SB-185-0.05	SB-186-0.05	SB-187-0.05	SB-188-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Asphalt	Concrete							
Lab Sample ID	Screening	80593.01	80592.25	80592.27	80592.17	80592.08	80592.01	81153.23	81153.27	81153.30	81153.31	81153.32	81153.33	81153.34	81153.01	81153.37
Date Collected	Criteria*	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)															
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		23.6	24.5	29.2	0.997	5.97	2.38	2.84	1.15	40.8	1.52	2.01	2.11	4.48	7.77	4.99
Aroclor-1254		20	12.5	17.1	0.291	2.82	1.03	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	43.6	37.0	46.3	1.29	8.79	3.41	2.84	1.15	40.8	1.52	2.01	2.11	4.48	7.77	4.99

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Somple ID		SB-189-0.05	CD 100 0 05	SB-191-0.05	SB-192-0.05	SB-193-0.05	SD 104 0 05	CD 105 0.05	CD 106 0.05	SB-197-0.05	CD 100 0 05	CD 100 0 05	SD 200 0 05	CD 201 0.05	SD 202 0.05
Sample ID			SB-190-0.05				SB-194-0.05		SB-196-0.05		SB-198-0.05	SB-199-0.05	SB-200-0.05	SB-201-0.05	SB-202-0.05
Medium		Concrete													
Lab Sample ID	Screening	81153.38	81153.39	81153.40	81153.41	81153.42	81153.45	81153.46	81153.47	81168.01	81168.02	81168.03	81378.01	81378.03	881378.05
Date Collected	Criteria*	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/27/16	04/27/16	04/27/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)														
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1248		18.8	0.644	18.1	1.59	4.44	0.268	3.6	1.87	< 0.05	4.58	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	0.518
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25
Total PCBs	1	18.8	0.644	18.1	1.59	4.44	0.268	3.6	1.87	ND	4.58	ND	ND	ND	0.518

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

- the sample was not detected above the reporting mint must

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-203-0.05	SB-204-0.05	SB-205-0.05		SB-207-0.05		SB-209-0.05		SB-210-0.05-a		SB-211-0.05-a			SB-214-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Lab Sample ID	Screening	81378.02	81378.06	81378.04	81378.10	81378.13	81378.12	81378.11	81378.14	81378.15	81378.16	81378.17	81378.20	81378.21	81378.19
Date Collected	Criteria*	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)														
Aroclor-1016		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Aroclor-1248		0.0662	0.853	5.06	< 0.25	7.64	6.15	0.453	46.4 /J/A	25.6	1.86	1.94	< 0.05	0.862	3.7
Aroclor-1254		0.0578	1.88	11.7	19.4	8.72	3.44	1.03	21.1 /J/A	12.7	1.19	1.27	0.205	0.617	1.58
Aroclor-1260		< 0.05	< 0.05	< 0.25	1.62	< 0.05	0.632	0.351	< 0.05	< 0.05	< 0.05	< 0.05	0.372	0.127	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Total PCBs	1	0.124	2.73	16.8	21.0	16.4	10.2	1.83	67.5	38.3	3.05	3.21	0.577	1.61	5.28

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID Medium Lab Sample ID Date Collected	Screening Criteria*	SB-215-0.05 Concrete 81378.18 04/27/16	SB-216-0.05 Concrete 81378.23 04/27/16	SB-216-0.05-a Concrete 81378.24 04/27/16	SB-217-0.05 Concrete 81378.22 04/27/16	SB-218-0.05 Concrete 83817.21 08/04/16	SB-219-0.05 Concrete 83817.20 08/04/16	SB-220-0.05 Concrete 83817.22 08/04/16	SB-221-0.05 Concrete 83803.07 08/03/16	SB-222-0.05 Concrete 83803.05 08/03/16	SB-222-0.05a Concrete 83803.06 08/03/16	SB-223-0.05 Concrete 83803.08 08/03/16	SB-223-0.05a Concrete 83803.09 08/03/16	SB-224-0.05 Concrete 83828.13 08/05/16
Polychlorinated Biphenyls by Method 8	082 (mg/kg)													
Aroclor-1016		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		9.19	< 0.25	< 0.25	1.52	< 0.125	< 0.25	< 0.025	14.9	5.97	6.08	5.82	6.65	< 0.025
Aroclor-1254		4.38	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	10.7	2.97	3.07	2.54	3.35	0.180
Aroclor-1260		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.05	< 0.25	< 0.25	< 0.1	< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	13.6	ND	ND	1.52	ND	ND	ND	25.6	8.94	9.15	8.36	10.00	0.180

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-225-0.05	SB-225-0.05a	SB-226-0.05	SB-226-0.05a	SB-227-0.05	SB-228-0.05	SB-229-0.05	SB-230-0.05	SB-231-0.05	SB-232-0.05	SB-234-0.05	SB-235-0.05	SB-236-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Lab Sample ID	Screening	83803.10	83803.11	83803.13	83803.12	83828.06	83803.33	83803.34	83828.04	83803.31	83803.15	83803.32	83803.14	83803.36
Date Collected	Criteria*	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16	08/03/16	08/05/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)													
Aroclor-1016		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		6.11	7.86 /J/I	4.56	4.95	< 0.125	< 0.025	< 0.125	< 0.025	23.9	44.3	8.86	43.8	< 0.025
Aroclor-1254		6.63	8.41 /J/I	2.81	2.85	24.6	1.76	22.3	13.6	11.9	56.6	7.36	8.91	< 0.025
Aroclor-1260		0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< <0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< <0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	12.74	16.27	7.37	7.80	24.6	1.76	22.3	13.6	35.8	100.9	16.22	52.71	ND

Notes:

* - Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-237-0.05	SB-238-0.05	SB-239-0.05	SB-240-0.05	SB-241-0.05	SB-242-0.05	SB-243-0.05	SB-244-0.05	SB-245-0.05	SB-246-0.05	SB-247-0.05	SB-248-0.05	SB-249-0.05	SB-251-0.05	SB-252-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete								
Lab Sample ID	Screening	83803.38	83828.14	83803.35	83803.37	83803.40	83803.35	83828.15	83803.41	83817.01	83817.02	83817.03	83817.11	83817.10	83817.18	83817.17
Date Collected	Criteria*	08/03/16	08/05/16	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)															
Aroclor-1016		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 0.13		< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 1.13	< 1.13	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 1.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		< 0.025	< 0.025	2.84	26.1	< 0.025	< 0.025	< 0.125	2.23	37.6 /J/I	< 1.125	< 0.125	6.35	< 0.025	< 0.025	< 0.05
Aroclor-1254		0.85	0.144	11.9	8.75	55.4	3.08	567	0.84	7.27 /J/I	0.369	17.6	5.24	16.7	< 0.025	9.75
Aroclor-1260		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25	< 0.125	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	0.85	0.144	14.7	34.85	55.4	3.08	567	3.07	44.87	0.369	17.6	11.59	16.7	ND	9.75

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-253-0.05	SB-254-0.05	SB-255-0.05	SB-256-0.05	SB-257-0.05	SB-258-0.05	SB-259-0.05	SB-260-0.05	SB-261-0.05	SB-262-0.05	SB-263-0.05	SB-264-0.05	SB-265-0.05	SB-266-0.05	SB-2670.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete								
Lab Sample ID	Screening	83817.15	83817.14	83817.13	83817.12	83817.07	83817.06	83817.05	83817.04	83817.19	83817.08	83817.09	83828.05	83817.23	83817.24	83828.03
Date Collected	Criteria*	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/05/16	08/04/16	08/04/16	08/05/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)															
Aroclor-1016		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03 /M/M	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1248		< 0.125	12.8	4.34	4.03	< 0.025	< 0.03	10.7	4.35	4.73	24.5	50.9	2.16	0.837	2.20	1.640
Aroclor-1254		15.0	6.35	1.17	2.32	50.7	26.0	6.95	1.89	2.02	8.91	14.4	0.95	0.298	1.54	0.492
Aroclor-1260		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03 / M/M	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13	< 0.025	< 0.025	< 0.025
Total PCBs	1	15.0	19.15	5.51	6.35	50.7	26.0	17.65	6.24	6.75	33.41	65.3	3.11	1.14	3.74	2.13

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

Sample ID		SB-268-0.05		SB-270-0.05								SB-277-0.05	SB-277-0.05a
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Lab Sample ID		83838.02	83838.01	83838.12	83838.07	83817.25	83838.11	\$83,838.10	83838.08	83803.01	83803.02	83803.03	83803.04
Date Collected		08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Biphenyls by Method 8	8082 (mg/kg)												
Aroclor-1016		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		8.19 /J/I	< 0.125	0.924	2.44	3.06	< 0.125	< 0.025	< 0.025	0.848	0.668	< 0.025	< 0.025
Aroclor-1254		3.99 /J/I	2.30	0.581	1.20	1.45	< 0.125	< 0.025	< 0.025	1.140	0.815	< 0.025	< 0.025
Aroclor-1260		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	12.18	2.30	1.51	3.64	4.51	ND	ND	ND	1.99	1.48	ND	ND

Notes:

 \ast - Screening criterion is 1 mg/kg, based on the EPA 40 CFR

Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated

-a - Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the
- D Percent difference of matrix spike duplicate exceeded establish
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate bla

			1	T	T			T			т	T		T		т				T	
		SB-1-1.5	SB-1-3	SB-1-5	SB-1-8	SB-1-11	SB-2-1.5	SB-2-3	SB-2-5	SB-2-8	SB-2-11	SB-3-1.5	SB-3-3	SB-3-5	SB-3-8	SB-3-11	SB-3-15	SB-3-19	SB-4-1.5	SB-4-3	SB-4-5
		1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	15 Feet	19 Feet	1.5 Feet	3 Feet	5 Feet
Lab Sample ID	Screening	115496-007	115496-008	115496-009	115498-007	115498-008	115496-004	115496-005	115496-006	115498-001	115498-002	115509-053	115509-054	115509-055	115499-002	115499-003	115499-005	115499-007	115509-011	115509-012	115509-013
Date Collected	Criteria*	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/27/10	12/27/10	12/27/10
Polychlorinated Biphenyls by Method 803	82 (mg/kg)																				
Aroclor-1016		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.16	< 0.033 /R/G	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.33	< 0.33	< 0.033	< 3.3	< 3.3	< 3.3	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor-1248		3.7	15	2300	10	0.08	990	230	2500	0.3	0.14	12	190	310	2.2	3.2	3.1	3.1	140 /B/V	7 57 /B/V	0.99 /B/V
Aroclor-1254		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016
Total PCBs	1	3.7	15	2300	10	0.08	990	230	2500	0.3	0.14	12	190	310	2.2	3.2	3.1	3.1	140	57	0.99

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criteria.
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		I	Ī	Ī	I		Ī	Ī		Ī		Ī		Ī	I		Ī	
		SB-4-8	SB-5-1.5	SB-5-1.5-a	SB-5-3	SB-5-3-a	SB-5-5	SB-5-5-a	SB-5-8	SB-5-11	SB-6-1.5	SB-6-1.5-a	SB-6-3	SB-6-5	SB-7-1.5	SB-7-3	SB-7-5	SB-7-8
		8 Feet	1.5 Feet	1.5 Feet	3 Feet	3 Feet	5 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet
Lab Sample ID	Screening	N005136-044	N005142-017	N005142-022	N005142-020	N005142-025	N005142-021	N005142-026	115561-118	115561-119	N005136-026	N005136-030	N005136-028	N005136-029	115509-020	115509-021	115509-022	115561-152
Date Collected	Criteria*	12/28/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/28/10	12/28/10	12/28/10	12/28/10	12/27/10	12/27/10	12/27/10	12/29/10
Polychlorinated Biphenyls by Method 803	82 (mg/kg)																	
Aroclor-1016		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16 /M/M	< 0.016
Aroclor-1221		< 0.033	< 33	< 33	< 33	< 33	< 33	< 0.033	< 0.033 H//	< 0.033 H//	< 0.033	< 0.033	< 0.033	< 0.033	< 0.33	< 0.33	< 0.33	< 0.033
Aroclor-1232		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016
Aroclor-1242		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016
Aroclor-1248		< 0.016	1300 /B/V	530	1700 /B/V	1200	1800 /B/V	60	0.068 H/B/V	< 0.016 H//	65	28	1.9	0.16	170 /B/V	250 /B/V	2700 /B/V	71 /B/V
Aroclor-1254		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016
Aroclor-1260		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16 /M/M	< 0.016
Aroclor-1262		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016
Aroclor 1268		< 0.016	< 16	< 16	< 16	< 17	< 16	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016
Total PCBs	1	ND	1300	530	1700	1200	1800	60	0.068	ND	65	28	1.9	0.16	170	250	2700	71

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-7-11 11 Feet	SB-7-15 15 Feet	SB-7-19 19 Feet	SB-7-23 23 Feet	SB-8-1.5 1.5 Feet	SB-8-3 3 Feet	SB-8-5 5 Feet	SB-8-8 8 Feet	SB-9-1.5 1.5 Feet	SB-9-1.5a 1.5 Feet	SB-9-3 3 Feet	SB-9-5 5 Feet	SB-10-1.5 1.5 Feet	SB-10-3 3 Feet	SB-10-5 5 Feet	SB-10-8 8 Feet
Lab Sample ID	Screening	115561-153	115561-155	115561-157	115561-159	115496-001	115496-002	115496-003	115500-007	115443-001	115443-004	115443-002	115443-003	115446-009	115446-010	115446-011	115445-013
Date Collected	Criteria*	12/29/10	12/29/10	12/29/10	12/29/10	12/23/10	12/23/10	12/23/10	12/23/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10
Polychlorinated Biphenyls by Method 808	32 (mg/kg)																
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.16	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor-1248		110 /B/V	600 /B/V	170 /B/V	0.05 /B/V	5800	2300	0.74	0.065	5600 /J/A	960	13	5.2	16	14000	120	4
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016
Total PCBs	1	110	600	170	0.05	5800	2300	0.74	0.065	5600	960	13	5.2	16	14000	120	4

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-10-11	SB-10-13	SB-10-15	SB-10-17	SB-10-19	SB-11-1.5	SB-11-3	SB-11-5	SB-11-8	SB-12-1.5	SB-12-3	SB-12-5	SB-12-8	SB-12-11	SB-13-1.5	SB-13-1.5-a	SB-13-3
		11 Feet	13 Feet	15 Feet	17 Feet	19 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	1.5 Feet	3 Feet
Lab Sample ID	Screening	115445-014	115445-015	115445-016	115445-017	115445-018	115509-035	115509-036	115509-037	115561-059	N005136-055	N005136-056	115541-151	N005136-046	115541-129	N005142-007	N005142-012	N005142-010
Date Collected	Criteria*	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/27/10	12/27/10	12/27/10	12/29/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/29/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 808	82 (mg/kg)																	_
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 3.3	< 3.3	< 0.66	< 0.66	< 0.66	< 0.033	< 33	< 33	< 0.33	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Aroclor-1248		130	110	280	310	370	11000 /JB/IV	390 /B/V	16 /B/V	< 0.016	2400	270	17 /B/V	< 0.016	< 0.016	29 /B/V	21	2.7 /B/V
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	0.42	0.49	0.093
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017
Total PCBs	1	130	110	280	310	370	11000	390	16	ND	2400	270	17	ND	ND	29.42	21.49	2.793

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

					1		1										1	
		SB-13-3-a	SB-13-5	SB-13-5-a	SB-13-8	SB-13-11	SB-14-1.5	SB-14-3	SB-14-5	SB-14-8	SB-15-1.5	SB-15-1.5-a	SB-15-3	SB-15-3-a	SB-15-5	SB-15-5-a	SB-15-8	SB-15-11
		3 Feet	5 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	1.5 Feet	1.5 Feet	3 Feet	3 Feet	5 Feet	5 Feet	8 Feet	11 Feet
Lab Sample ID	Screening	N005142-015	N005142-011	N005142-016	115561-102	115561-103	115509-032	115509-033	115509-034	115541-056	N005136-014	N005136-020	N005136-016	N005136-022	N005136-018	N005136-024	N005136-050	115541-146
Date Collected	Criteria*	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10
Polychlorinated Biphenyls by Method 808	lychlorinated Biphenyls by Method 8082 (mg/kg)																	
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	$<\ 0.033\ H/\!/$	< 0.033 H//	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	$<\ 0.016\ H/\!/$	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		0.91	5.5 /B/V	3.7	< 0.016 H//	< 0.016 H//	340 /B/V	1400 /B/V	36 /B/V	< 0.016	17	33	0.18	3	2.4	3.9	0.12	0.021 /B/V
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.016	0.12	< 0.016	$<\ 0.016\ H/\!/$	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	0.22	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	0.91	5.5	3.7	ND	ND	340	1400	36	ND	17	33	0.18	3	2.4	3.9	0.12	0.021

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-15-13	SB-16-1.5	SB-16-3	SB-16-5	SB-16-8	SB-16-11	SB-16-13	SB-16-15	SB-16-17	SB-16-19	SB-16-23	SB-16-25	SB-17-1.5	SB-17-1.5a	SB-17-3	SB-17-5
		13 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	13 Feet	15 Feet	17 Feet	19 Feet	23 Feet	25 Feet	1.5 Feet	1.5 Feet	3 Feet	5 Feet
Lab Sample ID	Screening	N005136-054	115496-010	115496-011	115496-012	115573-039	115573-040	115573-041	115573-042	115573-043	115573-044	115573-045	115573-046	115497-004	115497-007	115497-005	115497-006
Date Collected	Criteria*	12/28/10	12/23/10	12/23/10	12/23/10	12/30/10	12/30/10	12/30/10	12/30/10	12/30/10	12/30/10	12/30/10	12/30/10	12/23/10	12/23/10	12/23/10	12/23/10
Polychlorinated Biphenyls by Method 808	lychlorinated Biphenyls by Method 8082 (mg/kg)																
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33 /M/M
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033 /R/G	< 3.3	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.66
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33
Aroclor-1248		0.03	130	8.1	22000	4800 /B/V	150 /B/V	220 /B/V	78 /B/V	4800 /B/V	330 /B/V	110 /B/V	160 /B/V	310 /J/A	1900	620	2200
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33 /M/M
Aroclor-1262		< 0.016	< 0.016	< 0.016	<~0.016~/R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33
Total PCBs	1	0.03	130	8.1	22000	4800	150	220	78	4800	330	110	160	310	1900	620	2200

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

			Ī	I					Ī	T		T		Ī		Ī		
		SB-17-8	SB-18-1	SB-18-3	SB-18-5	SB-19-1.5	SB-19-3	SB-19-5	SB-20-1.5	SB-20-3	SB-20-5	SB-21-1.5	SB-21-3	SB-21-5	SB-21-8	SB-22-1.5	SB-22-3	SB-22-5
		8 Feet	1 Foot	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	1.5 Feet	3 Feet	5 Feet
Lab Sample ID	Screening	115499-009	115432-012	115432-013	115432-014	115428-007	115428-008	115428-009	115431-007	115431-008	115431-009	115497-001	115497-002	115497-003	115501-007	115509-056	115509-057	115509-058
Date Collected	Criteria*	12/23/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10
Polychlorinated Biphenyls by Method 803	lychlorinated Biphenyls by Method 8082 (mg/kg)															_		
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.33	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor-1248		4.7	1.8	0.05	0.057	< 0.016	< 0.016	< 0.016	10	0.038	0.21	120	470	2.1	0.086	7400	12	11
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016
Total PCBs	1	4.7	1.8	0.05	0.057	ND	ND	ND	10	0.038	0.21	120	470	2.1	0.086	7400	12	11

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-22-8	SB-22-15	SB-22-19	SB-23-1.5	SB-23-3	SB-23-5	SB-23-8	SB-23-11	SB-24-1.5	SB-24-3	SB-24-5	SB-24-8'	SB-24-11	SB-24-13	SB-24-15	SB-24-17	SB-24-19
		8 Feet	15 Feet	19 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	11 Feet	13 Feet	15 Feet	17 Feet	19 Feet
Lab Sample ID	Screening	115501-001	115501-004	115501-006	115509-029	115509-030	115509-031	115561-094	115561-095	115497-008	115497-009	115497-010	115541-028	115541-029	115541-030	115541-031	115541-032	115541-033
Date Collected	Criteria*	12/23/10	12/23/10	12/23/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/23/10	12/23/10	12/23/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10
Polychlorinated Biphenyls by Method 808	ychlorinated Biphenyls by Method 8082 (mg/kg)																	
Aroclor-1016		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.33	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	<~0.033~/J/i	< 0.033 /R/G	< 0.033 /R/G	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		0.73	0.066	0.045	0.9 /B/V	6.6 /B/V	7 3800 /JB/IV	< 0.016	< 0.016	140	1400	6400	12 /B/V	2.1 /B/V	1.1 /B/V	0.16 /B/V	0.2 /B/V	0.019 /B/V
Aroclor-1254		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	0.73	0.066	0.045	0.9	6.6	3800	ND	ND	140	1400	6400	12	2.1	1.1	0.16	0.2	0.019

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-24-21 21 Feet	SB-24-23 23 Feet	SB-24-25 25 Feet	SB-25-1.5 1.5 Feet	SB-25-3 3 Feet	SB-25-5 5 Feet	SB-25-8 8 Feet	SB-26-1.5 1.5 Feet	SB-26-3 3 Feet	SB-26-5 5 Feet	SB-26-8 8 Feet	SB-27-1.5 1.5 Feet	SB-27-3 3 Feet	SB-27-5 5 Feet	SB-27-8 8 Feet	SB-27-13 13 Feet
Lab Sample ID	Screening	115541-034	115541-035	115541-036	115509-001	115509-002	115509-003	115561-144	115509-004	115509-005	115509-006	115561-072	115497-011	115497-012	115497-013	115561-051	115561-052
Date Collected	Criteria*	12/28/10	12/28/10	12/28/10	12/27/10	12/27/10	12/27/10	12/29/10	12/27/10	12/27/10	12/27/10	12/29/10	12/23/10	12/23/10	12/23/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033 /R/G	< 0.033 /R/G	< 0.033 /R/G	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 / R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor-1248		0.25 /B/V	< 0.016	0.038 /B/V	61 /B/V	700 /B/V	5 /B/V	0.013 J/B/V	0.67 /B/V	0.61 /B/V	0.62 /B/V	< 0.016	860	490	0.25 /J/G	0.21 /B/V	< 0.016
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016
Total PCBs	1	0.25	0.016	0.038	61	700	5	0.013	0.67	0.61	0.62	ND	860	490	0.25	0.21	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-28-1.5 1.5 Feet	SB-28-3 3 Feet	SB-28-5 5 Feet	SB-28-17 17 Feet	SB-28-23 23 Feet	SB-28-25 25 Feet	SB-29-1.5 1.5 Feet	SB-29-3 3 Feet	SB-29-5 5 Feet	SB-30-1.5 1.5 Feet	SB-30-3 3 Feet	SB-30-5 5 Feet	SB-30-8 8 Feet	SB-31-1.5 1.5 Feet	SB-31-1.5a 1.5 Feet	SB-31-3 3 Feet
Lab Sample ID	Screening	115509-017	115509-018	115509-019	115561-021	115561-019	115561-020	115509-014	115509-015	115509-016	115446-001	115446-002	115446-003	115445-001	115443-014	115443-017	115443-015
Date Collected	Criteria*	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																
Aroclor-1016		< 0.16 /M/M	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/MD	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.33	< 0.33	< 0.33	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		780 /B/V	2000 /B/V	6500 /B/V	< 0.016	< 0.016	< 0.016	3 /B/V	0.18 /B/V	0.19 /B/V	85	2	0.33	0.17	1500	1200	1.7
Aroclor-1254		< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.16 / M/M	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/MD	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	780	2000	6500	ND	ND	ND	3	0.18	0.19	85	2	0.33	0.17	1500	1200	1.7

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-31-5 5 Feet	SB-31-8 8 Feet	SB-32-3 3 Feet	SB-32-5 5 Feet	SB-33-3 3 Feet	SB-33-5 5 Feet	SB-34-3 3 Feet	SB-34-5 5 Feet	SB-35-3 3 Feet	SB-35-5 5 Feet	SB-36-3 3 Feet	SB-36-5 5 Feet	SB-37-1.5 1.5 Feet	SB-37-3 3 Feet	SB-37-5 5 Feet	SB-38-1.5 1.5 Feet	SB-38-1.5a 1.5 Feet
Lab Sample ID	Screening	115443-016	115447-007	115509-049	115509-050	115509-051	115509-052	N005136-001	N005136-003	N005136-007	N005136-008	N005136-004	N005136-005	N005136-040	N005136-042	N005136-043	115443-005	115443-008
Date Collected	Criteria*	12/22/10	12/22/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/28/10	12/28/10	12/28/10	12/22/10	12/22/10
Polychlorinated Biphenyls by Method 808	82 (mg/kg)																	
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		3.3	0.22	0.9 /B/V	0.14 /B/V	0.28 /B/V	0.061 /B/V	0.26 /B/V	0.16 /B/V	0.033 /B/V	< 0.016	0.22 /B/V	0.068 /B/V	3.1	0.22	0.15	6.7 /J/A	14
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	3.3	0.22	0.9	0.14	0.28	0.061	0.26	0.16	0.033	0.016	0.22	0.068	3.1	0.22	0.15	6.7	14

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-38-3 3 Feet	SB-38-5 5 Feet	SB-38-8 8 Feet	SB-38-11 11 Feet	SB-39-1.5 1.5 Feet	SB-39-1.5a 1.5 Feet	SB-39-3 3 Feet	SB-39-5 5 Feet	SB-40-1.5 1.5 Feet	SB-40-3 3 Feet	SB-40-5 5 Feet	SB-40-11 11 Feet	SB-41-1.5 1.5 Feet	SB-41-3 3 Feet	SB-41-5 5 Feet	SB-41-8 8 Feet
Lab Sample ID	Screening	115443-006	115443-007	115444-009	115444-010	N005136-032	115541-165	N005136-038	N005136-039	115509-026	115509-027	115509-028	115573-022	115509-023	115509-024	115509-025	115573-013
Date Collected	Criteria*	12/22/10	12/22/10	12/22/10	12/22/10	12/28/10	12/28/10	12/28/10	12/28/10	12/27/10	12/27/10	12/27/10	12/30/10	12/27/10	12/27/10	12/27/10	12/30/10
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																_
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.3	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor-1248		9.2	0.043	5.2 /B/V	0.23	0.58	1	0.99	< 0.016	49 /B/V	17 /B/V	110 /B/V	0.015 J/B/V	310 /B/V	5200 /JB/IV	66 /B/V	0.044 /B/V
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.04	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016
Total PCBs	1	9.2	0.043	5.2	0.23	0.58	1	1.03	0.3	49	17	110	0.015	310	5200	66	0.044

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-42-1.5 1.5 Feet	SB-42-3 3 Feet	SB-42-5 5 Feet	SB-42-8 8 Feet	SB-42-11 11 Feet	SB-43-1.5 1.5 Feet	SB-43-3 3 Feet	SB-43-5 5 Feet	SB-43-8 8 Feet	SB-44-1.5 1.5 Feet	SB-44-1.5a 1.5 Feet	SB-44-3 3 Feet	SB-44-5 5 Feet	SB-45-1.5 1.5 Feet	SB-45-3 3 Feet
Lab Sample ID	Screening	115431-004	115431-005	115431-006	115561-110	115561-111	115431-001	115431-002	115431-003	115561-130	115443-010	115443-013	115443-011	115443-012	115446-006	115446-007
Date Collected	Criteria*	12/21/10	12/21/10	12/21/10	12/29/10	12/29/10	12/21/10	12/21/10	12/21/10	12/29/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10
Polychlorinated Biphenyls by Method 808	82 (mg/kg)															_
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	< 0.016 /J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	<~0.033~/M/M	< 0.033	< 0.033	<~0.033~/J/i	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 / M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		0.21	0.14	240	0.98 /B/V	< 0.016	70	3.8 /M/M	18	< 0.016	17	3.7	0.092	0.13	1200	1000
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	< 0.016 /J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	0.21	0.14	240	0.98	ND	70	3.8	18	ND	17	3.7	0.092	0.13	1200	1000

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-45-5	SB-45-8	SB-47-1.5	SB-47-3	SB-47-5	SB-47-8	SB-48-1.5	SB-48-3	SB-48-5	SB-49-1	SB-49-3	SB-49-5	SB-50-1.5	SB-50-3
		5 Feet	8 Feet	1.5 Feet	3 Feet	5 Feet	8 Feet	1.5 Feet	3 Feet	5 Feet	1 Foot	3 Feet	5 Feet	1.5 Feet	3 Feet
Lab Sample ID	Screening	115446-008	115445-007	115432-009	115432-010	115432-011	115428-011	115428-021	115428-022	115428-023	115432-001	115432-002	115432-003	N005136-009	N005136-010
Date Collected	Criteria*	12/22/10	12/22/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/28/10	12/28/10
Polychlorinated Biphenyls by Method 8	082 (mg/kg)														
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		2	0.12	43	0.19	1.6	0.22	1.6	1.7	32	0.022	0.044	0.11	270	24
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	2.6	0.26
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCB	ss 1	2	0.12	43	0.19	1.6	0.22	1.6	1.7	32	0.022	0.044	0.11	272.6	24.26

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		1	1	T .			1			Ī					T .	
		SB-50-5	SB-51-1.5	SB-51-3	SB-51-5	SB-52-1.5	SB-52-3	SB-52-5	SB-53-1.5	SB-53-3	SB-53-5	SB-54-1.5	SB-54-3	SB-54-5	SB-55-1.5	SB-55-
		5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	3 Feet	5 Feet	1.5 Feet	1.5 F
Lab Sample ID	Screening	N005136-012	115428-001	115428-002	115428-003	115428-004	115428-005	115428-006	115431-016	115431-017	115431-018	115509-007	115509-008	115509-009	N005142-027	N00514
Date Collected	Criteria*	12/28/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29
Polychlorinated Biphenyls by Method 80	082 (mg/kg)															
Aroclor-1016		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221		< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248		11	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.13	< 0.016	0.22 /B/V	0.13 /B/V	0.066 /B/V	0.38 /B/V	0.37
Aroclor-1254		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260		0.13	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268		< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Total PCBs	1	11.13	0.016	ND	ND	ND	ND	ND	ND	0.13	ND	0.22	0.13	0.066	0.38	0.37

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		1.5-a	SB-55-3 3 Feet	SB-55-3-a 3 Feet	SB-55-5 5 Feet	SB-55-8 8 Feet	SB-56-1.5 1.5 Feet	SB-56-3 3 Feet	SB-56-3-a 3 Feet	SB-56-5 5 Feet	SB-56-5-a 5 Feet	SB-57-1.5 1.5 Feet	SB-57-3 3 Feet	SB-57-5 5 Feet	SB-58-1.5 1.5 Feet	SB-58-3 3 Feet	SB-58-5 5 Feet
Lab Sample ID	Screening	2-032	N005142-030	N005142-035	N005142-031	115573-030	1.5 Feet 115509-048	N005142-003	N005142-005	N005142-004	N005142-006	1.5 Feet 115509-045	115509-046	115509-047	115509-042	115509-043	115509-044
Date Collected	Criteria*	/10	12/29/10	12/29/10	12/29/10	12/30/10	12/27/10	12/29/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)															_	
Aroclor-1016			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016 /M/M	< 0.016
Aroclor-1221			< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.033	< 0.033
Aroclor-1232			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Aroclor-1242			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Aroclor-1248			0.093 /B/V	0.17	0.28 /B/V	0.13 /B/V	2.7 /B/V	0.059 /B/V	0.18	0.29 /B/V	0.14	0.65 /B/V	0.4 /B/V	0.24 /B/V	16 /B/V	2.2 /B/V	0.48 /B/V
Aroclor-1254			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Aroclor-1260			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Aroclor-1262			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Aroclor 1268			< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016
Total PCBs	1		0.093	0.17	0.28	0.13	2.7	0.059	0.18	0.29	0.14	0.65	0.4	0.24	16	2.2	0.48

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-58-8 8 Feet	SB-59-1.5	SB-59-3 3 Feet	SB-59-5 5 Feet	SB-60-1.5	SB-60-3 3 Feet	SB-60-5 5 Feet	SB-60-5-a 5 Feet	SB-60-8 8 Feet	SB-60-11 11 Feet	SB-61-1.5	SB-61-3 3 Feet	SB-61-3-a 3 Feet	SB-61-5 5 Feet	SB-61-5-a 5 Feet	SB10B-23 23 Feet
			1.5 Feet			1.5 Feet						1.5 Feet					
Lab Sample ID	Screening	115541-112	115509-039	115509-040	115509-041	115428-017	115428-018	115428-019	115428-020	115428-010	115431-013	N005142-036	N005142-039	N005142-047	N005142-040	N005142-048	64279.08
Date Collected	Criteria*	12/28/10	12/27/10	12/27/10	12/27/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/11
Polychlorinated Biphenyls by Method 8	082 (mg/kg)																
Aroclor-1016		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor-1221		< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.05
Aroclor-1232		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor-1242		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	0.89	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor-1248		< 0.016	3.6 /B/V	2 /B/V	3 /B/V	< 0.016	< 0.016	< 0.016	< 0.016	0.33	0.18	21 /B/V	0.65 /B/V	< 0.016	0.27 /B/V	0.43	0.105
Aroclor-1254		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor-1260		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor-1262		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Aroclor 1268		< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05
Total PCB	s 1	ND	3.6	2	3	ND	ND	ND	0.89	0.33	0.18	21	0.65	0.016	0.27	0.43	0.105

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB10B-25 25 Feet	SB10B-28 28 Feet	SB10B-30 30 Feet	SB16B-28 28 Feet	SB16B-28-a 28 Feet	SB16B-30 30 Feet	SB16B-30-a 30 Feet	SB17B-11 11 Feet	SB17B-13 13 Feet	SB17B-15 15 Feet	SB17B-17 17 Feet	SB17B-19 19 Feet	SB17B-23 23 Feet	SB17B-25 25 Feet	SB17B-28 28 Feet	SB39B-10 10 Feet	SB39B-15 15 Feet	SB3B-23 23 Feet
Lab Sample ID	Screening	64279.09	64279.1	64279.24	64262.13	64262.14	64266.22	64266.23	64255.01	64255.02	64255.03	64255.04	64255.05	64255.06	64255.07	64255.08	64253.11	64253.12	64265.07
Date Collected	Criteria*	12/29/11	12/29/11	12/29/11	12/28/11	12/28/11	12/28/11	12/28/11	27-Dec-11	28-Dec-11									
Polychlorinated Biphenyls by Method 803	82 (mg/kg)																		
Aroclor-1016		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		2270	0.534	0.114	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1254		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	2270	0.534	0.114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB3B-25	SB3B-28	SB3B-30	SB50B-08	SB50B-11	SB50B-13	SB50B-15	SB50B-17	SB50B-19	SB50B-23	SB50B-25	SB59B-08	SB59B-11	SB59B-13	SB59B-15	SB59B-17	SB59B-19	SB62-0
		25 Feet	28 Feet	30 Feet	8 Feet	11 Feet	13 Feet	15 Feet	17 Feet	19 Feet	23 Feet	25 Feet	8 Feet	11 Feet	13 Feet	15 Feet	17 Feet	19 Feet	1.5 Fe
Lab Sample ID	Screening	64265.08	64265.09	64265.1	64253.01	64253.02	64253.03	64253.04	64253.05	64253.06	64253.07	64253.08	64266.21	64262.15	64262.16	64262.17	64262.18	64262.19	64262
Date Collected	Criteria*	28-Dec-11	28-Dec-11	28-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec							
Polychlorinated Biphenyls by Method 80	082 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.05	< 0.05	0.393	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0709	< 0.05	< 0.05	< 0.05	0.0511	< 0.05	0.054
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCB	s 1	ND	ND	0.393	ND	0.0709	ND	ND	ND	0.0511	0.05	0.054							

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	et	S 362SB623-01.5-a 1.5 Feet 64262642262.21 28-De284Dec-11	SB62-05 5 Feet 64262.22 28-Dec-11	SB62-05-a 5 Feet 64262.23 28-Dec-11	SB62-10 10 Feet 64262.24 28-Dec-11	SB62-10-a 10 Feet 64262.25 28-Dec-11	SB63-01.5 1.5 Feet 64256.3 27-Dec-11	SB63-05 5 Feet 64262.34 28-Dec-11	SB63-10 10 Feet 64262.35 28-Dec-11	SB64-01.5 1.5 Feet 64262.36 28-Dec-11	SB64-05 5 Feet 64263.01 28-Dec-11	SB64-10 10 Feet 64263.02 28-Dec-11	SB65-01.5 1.5 Feet 64263.07 28-Dec-11	SB65-05 5 Feet 64263.08 28-Dec-11	SB66-01.5 1.5 Feet 64256.29 27-Dec-11	SB66-05 5 Feet 64262.37 28-Dec-11	SB66-10 10 Feet 64262.38 28-Dec-11
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																	
Aroclor-1016			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		/J/A	0.0932	< 0.05	< 0.05	< 0.05	< 0.05	0.366	< 0.05	< 0.05	0.132	0.0811	< 0.05	0.031	< 0.05	0.207	< 0.05	0.0949
Aroclor-1254			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1		0.0932	ND	ND	ND	ND	0.366	ND	ND	0.132	0.0811	ND	0.031	ND	0.207	ND	0.0949

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	SB67-01.5 1.5 Feet 64266.19 28-Dec-11	SB67-05 5 Feet 64278.18 29-Dec-11	SB67-10 10 Feet 64278.19 29-Dec-11	SB68-01.5 1.5 Feet 64253.16 27-Dec-11	SB68-01.5-a 1.5 Feet 64253.17 27-Dec-11	SB68-05 5 Feet 64278.02 29-Dec-11	SB68-05-a 5 Feet 64278.03 29-Dec-11	SB68-10 10 Feet 64278.04 29-Dec-11	SB68-10-a 10 Feet 64278.05 29-Dec-11	SB69-01.5 1.5 Feet 64253.18 27-Dec-11	SB69-01.5-a 1.5 Feet 64254.01 27-Dec-11	SB69-05 5 Feet 64254.19 27-Dec-11	SB69-05-a 5 Feet 64254.2 27-Dec-11	SB69-10 10 Feet 64254.21 27-Dec-11	SB69-10-a 10 Feet 64254.22 27-Dec-11	SB69-15 15 Feet 64254.23 27-Dec-11	SB69-20 20 Feet 64254.25 27-Dec-11
Polychlorinated Biphenyls by Method 808	32 (mg/kg)	1						l l			l	<u> </u>						
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1 /M/M	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor-1248		0.112	0.0817	< 0.05	7.46 /J/A	28.4	0.263	< 0.05	0.0361	< 0.05	16.4	14.2	1.49 /J/A	3.22	2.8 /J/A	4.67	3.77	0.356
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05
Total PCBs	1	0.112	0.0817	ND	7.46	28.4	0.263	ND	0.0361	0.05	16.4	14.2	1.49	3.22	2.8	4.67	3.77	0.356

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	SB70-01.5 1.5 Feet 64265.18 28-Dec-11	SB70-05 5 Feet 64265.19 28-Dec-11	SB70-10 10 Feet 64265.2 28-Dec-11	SB71-01.5 1.5 Feet 64254.07 27-Dec-11	SB71-01.5-a 1.5 Feet 64254.08 27-Dec-11	SB71-10 10 Feet 64254.11 27-Dec-11	SB71-10-a 10 Feet 64254.12 27-Dec-11	SB71-5 5 Feet 64254.09 27-Dec-11	SB71-5-a 5 Feet 64254.1 27-Dec-11	SB72-01.5 1.5 Feet 64254.03 27-Dec-11	SB72-05 5 Feet 64254.04 27-Dec-11	SB72-10 10 Feet 64254.05 27-Dec-11	SB73-01.5 1.5 Feet 64255.1 27-Dec-11	SB73-01.5-a 1.5 Feet 64255.11 27-Dec-11	SB73-05 5 Feet 64255.12 27-Dec-11	SB73-05-a 5 Feet 64255.13 27-Dec-11	SB73-10 10 Feet 64255.14 27-Dec-11	SB73-10-a 10 Feet 64255.15 27-Dec-11
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1248		0.155	< 0.05	< 0.05	82.9 /J/A	47.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.419	< 0.05	< 0.05	322	355	47.6	38.3	1710 /J/A	1090
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Total PCBs	1	0.155	ND	ND	82.9	47.1	ND	ND	ND	ND	ND	ND	ND	322	355	47.6	38.3	1710	1090

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB73-15 15 Feet	SB73-15-a 15 Feet	SB73-20 20 Feet	SB73-20-a 20 Feet	SB73-25 25 Feet	SB73-25-a 25 Feet	SB73-30 30 Feet	SB73-30-a 30 Feet	SB74-01.5 1.5 Feet	SB74-05 5 Feet	SB74-10 10 Feet	SB75-01.5 1.5 Feet	SB75-05 5 Feet	SB75-10 10 Feet	SB9B-08 8 Feet	SB9B-11 11 Feet
Lab Sample ID	Screening	64255.16	64255.17	64255.18	64255.19	64255.2	64255.21	64255.22	64255.23	64256.12	64256.13	64256.14	64256.19	64256.2	64256.21	64279.12	64279.13
Date Collected	Criteria*	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	29-Dec-11	29-Dec-11
Polychlorinated Biphenyls by Method 808	82 (mg/kg)																
Aroclor-1016		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1248		1180 /J/A	3650	31.4 /J/A	0.486	0.823 /J/A	0.122	0.169 /J/A	0.0683	51.4	< 0.05	< 0.05	70.2	2.74	< 0.05	0.203	82.2
Aroclor-1254		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05
Total PCBs	1	1180	3650	31.4	0.486	0.823	0.122	0.169	0.0683	51.4	ND	ND	70.2	2.74	ND	0.203	82.2

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

			SB9B-13	SB9B-15	SB9B-17	SB9B-19	SB76-1	SB76-3	SB76-5	SB76-10	SB77-1	SB77-3	SB77-5	SB77-10	SB78-1	SB78-3	SB78-5	SB79-1	SB78-3	SB79
			13 Feet	15 Feet	17 Feet	19 Feet	1 Foot	3 Feet	5 Feet	1- Feet	1 Foot	3 Feet	5 Feet	10 Feet	1 Foot	3 Feet	5 Feet	1 Foot	3 Feet	5 Fee
Lab Sample ID		Screening	64279.14	64279.15	64279.16	64279.17	67302.43	67302.44	67302.45	67301.06	67301.11	67301.12	67301.13	67301.14	67243.05	67243.06	67243.07	67241.27	67243.06	67241
Date Collected		Criteria*	29-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	10/27/12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct
Polychlorinated Biphenyls by Meth	od 8082 (m	ng/kg)																		
Aroclor-1016			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248			34.6	263	134	0.266	< 0.05	< 0.05	< 0.05	< 0.05	0.388	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.146	< 0.05	< 0.05
Aroclor-1254			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.241	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260			< 1	< 10	< 5	< 0.05	< 0.05 /J/	/E < 0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						
Aroclor-1262			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268			< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total	PCBs	1	34.6	263	134	0.266	ND	ND	ND	ND	0.629	ND	ND	ND	ND	ND	ND	0.146	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

			SB SB 80-1	SB80-3	SB80-5	SB81-1	SB81-3	SB81-5	SB82-1	SB82-3	SB82-5	SB83-1	SB83-3	SB83-5	SB83-10	SB83-15	SB84-1	SB84-3	
		et	1 Foot	3 Feet	5 Feet	1 Foot	3 Feet	5 Feet	1 Foot	3 Feet	5 Feet	1 Foot	3 Feet	5 Feet	10 Feet	15 Feet	1 Foot	3 Feet	Ì
Lab Sample ID	Screening		672 67 11 29 .1	67192.11	67192.12	67302.08	67302.09	67302.1	67157.21	67157.22	67157.23	67157.07	67157.08	67157.09	67175.19	67175.2	67193.09	67193.1	
Date Collected	Criteria*		23 -10 eO&212	18-Oct-12	18-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	17-Oct-12	17-Oct-12	18-Oct-12	18-Oct-12	
Polychlorinated Biphenyls by Method 80	082 (mg/kg)																		
Aroclor-1016			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1221			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1232			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1242			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1248			< 0.05	< 0.05	< 0.05	2.02	0.0555	0.0298 J	0.234	< 0.05	< 0.05	62	24.8	10	< 0.05	< 0.05	1.21	0.959	
Aroclor-1254			< 0.05	< 0.05	< 0.05	0.787	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1260			< 0.05	< 0.05	< 0.05	< 0.05 /J/E	< 0.05 /J/E	< 0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1262			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor 1268			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Total PCBs	s 1		ND	ND	ND	2.807	0.0555	0.0298	0.234	ND	ND	62	24.8	10	ND	ND	1.21	0.959	Г

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*		\$B8 \\$B 84-10 10 Feet 5719 \\$71 93.15 8-Odt8 \\$0 ct-12	SB84-15 15 Feet 67193.16 18-Oct-12	SB84-20 20 Feet 67193.17 18-Oct-12	SB85-1 1 Foot 67156.25 16-Oct-12	SB85-3 3 Feet 67156.26 16-Oct-12	SB85-5 5 Feet 67156.27 16-Oct-12	SB86-1 1 Foot 67302.03 27-Oct-12	SB86-3 3 Feet 67302.04 27-Oct-12	SB86-5 5 Feet 67302.05 27-Oct-12	SB87-1 1 Foot 67193.03 18-Oct-12	SB87-3 3 Feet 67193.04 18-Oct-12	SB87-5 5 Feet 67193.05 18-Oct-12	SB87-10 10 Feet 67269.01 18-Oct-12	SB87-15 15 Feet 67269.02 18-Oct-12	SB88-1 1 Foot 67176.17 17-Oct-12	SB88-3 3 Feet 67176.18 17-Oct-12
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																	
Aroclor-1016		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		0.0813	< 0.05	< 0.05	0.0262 J	0.78	0.208	0.129	1.6	0.287	0.0414 J	7920	79.6	92.3	< 0.05	< 0.05	4160	46.3
Aroclor-1254		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	$<~0.05~/\mathrm{J/E}$	< 0.05 /J/E	<~0.05~/J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	0.0813	ND	ND	0.0262	0.78	0.208	0.129	1.6	0.287	0.0414	7920	79.6	92.3	ND	ND	4160	46.3

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

										I									T
		SB88-5	SB88-12	SB88-15	SB88-20	SB89-1	SB89-3	SB89-5	SB89-10	SB89-15	SB89-20	SB90-1	SB90-3	SB90-5	SB90-10	SB90-15	SB90-20	SB91-1	
		5 Feet	12 Feet	15 Feet	20 Feet	1 Foot	3 Feet	5 Feet	10 Feet	15 Feet	20 Feet	1 Foot	3 Feet	5 Feet	10 Feet	15 Feet	20 Feet	1 Foot	
Lab Sample ID	Screening	67176.19	67176.2	67176.21	67176.22	67176.09	67176.1	67176.11	67176.12	67176.13	67176.14	67176.01	67176.02	67176.03	67175.34	67175.35	67176.04	67193.2	
Date Collected	Criteria*	17-Oct-12	18-Oct-12																
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1248		3.13	< 0.05	< 0.05	< 0.05	0.0356 J	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	116	П
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Total PCBs	1	3.13	ND	ND	ND	0.0356	ND	116											

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

	T	T				T	1	T		т					T			
			SB\$B94a3	SB91-3-a	SB91-5	SB91-5-a	SB91-10	SB91-10-a	SB91-15	SB91-15-a	SB91-20	SB91-20-a	SB91-25	SB91-30	SB92-1	SB92-3	SB92-5	SB92-10
		1 Foot	3 Feet	3 Feet	5 Feet	5 Feet	10 Feet	10 Feet	15 Feet	15 Feet	20 Feet	20 Feet	25 Feet	30 Feet	1 Foot	3 Feet	5 Feet	10 Feet
Lab Sample ID	Screening		67 693 923321	67193.24	67193.22	67193.25	67193.26	67193.27	67192.01	67192.02	67192.03	67192.04	67192.05	67192.07	67194.01	67194.02	67194.03	67194.04
Date Collected	Criteria*		184 0 cOd212	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12								
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																	
Aroclor-1016		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		121	1.51 /J/A	0.798	0.383	0.499	0.0652	< 0.05	3.54 /J/A	8.25	12.1 /J/A	25.5	5.42	< 0.05	0.153	< 0.05	< 0.05	< 0.05
Aroclor-1254		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<~0.05~/M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	121	1.51	0.798	0.383	0.499	0.0652	ND	3.54	8.25	12.1	25.5	5.42	ND	0.153	ND	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB92-15	SB93-1	SB93-1-a	SB93-3	SB93-3-a	SB93-5	SB93-5-a	SB93-10	SB93-10-a	SB93-15	SB93-15-a	SB93-20	SB93-20-a	SB93-25	SB94-1	SB94-3	SB94-5	SB94-
		15 Feet	1 Foot	1 Foot	3 Feet	3 Feet	5 Feet	5 Feet	10 Feet	10 Feet	15 Feet	15 Feet	20 Feet	20 Feet	25 Feet	1 Foot	3 Feet	5 Feet	10 Fe
Lab Sample ID	Screening	67194.05	67241.14	67241.15	67241.12	67241.13	67241.16	67241.17	67241.18	67241.19	67241.2	67241.21	67241.23	67241.24	67285.03	67207.01	67207.02	67207.03	67207
Date Collected	Criteria*	18-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.05	22.7 /J/A	35	22.9	20.5	8.69	11.7	40.4 /J/A	26.2	506 /J/A	855	260 /J/A	602	0.025 J	1.29	1.41	0.426	< 0.05
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	<~0.05~/M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	ND	22.7	35	22.9	20.5	8.69	11.7	40.4	26.2	506	855	260	602	0.025	1.29	1.41	0.426	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	et	SB\$B\$H015 15 Feet 67 2072.00 5.06 194 9 c 0 d 2 12	SB94-20 20 Feet 67207.07 19-Oct-12	SB95-1 1 Foot 67210.07 19-Oct-12	SB95-3 3 Feet 67210.08 19-Oct-12	SB95-5 5 Feet 67261.01 19-Oct-12	SB95-10 10 Feet 67261.02 19-Oct-12	SB96-1 1 Foot 67156.28 16-Oct-12	SB96-3 3 Feet 67156.29 16-Oct-12	SB96-5 5 Feet 67156.3 16-Oct-12	SB96-10 10 Feet 67157.16 16-Oct-12	SB96-15 15 Feet 67157.17 16-Oct-12	SB97-1 1 Foot 67156.19 16-Oct-12	SB97-3 3 Feet 67156.2 16-Oct-12	SB97-5 5 Feet 67156.21 16-Oct-12	SB97-10 10 Feet 67157.01 16-Oct-12	SB97-15 15 Feet 67157.02 16-Oct-12	SB98-1 1 Foot 67156.22 16-Oct-12
Polychlorinated Biphenyls by Method 80	1	<u> </u>		-, -, -, -, -, -, -, -, -, -, -, -, -, -			.,												
Aroclor-1016			< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248			< 0.05	< 0.05	15.2	3.22	4.67	< 0.05	1090 /J/I	3240	12.2	0.0489 J	0.0293 J	1180 /J/I	3970 /J/I	175	< 0.05	< 0.05	3550
Aroclor-1254			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1		ND	ND	15.2	3.22	4.67	ND	1090	3240	12.2	0.0489	0.0293	1180	3970	175	ND	ND	3550

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB98-3	SB98-5	SB98-10	SB98-15	SB98-20	SB98-25	SB98-30	SB99-1	SB99-1-a	SB99-3	SB99-3-a	SB99-5	SB99-5-a	SB99-10	SB99-10-a	SB99-15	SB99-15-a
		3 Feet	5 Feet	10 Feet	15 Feet	20 Feet	25 Feet	30 Feet	1 Foot	1 Foot	3 Feet	3 Feet	5 Feet	5 Feet	10 Feet	10 Feet	15 Feet	15 Feet
Lab Sample ID	Screening	67156.23	67156.24	67175.07	67175.08	67175.09	67175.1	67175.11	67157.1	67157.13	67157.11	67157.14	67157.12	67157.15	67175.24	67175.26	67175.25	67175.27
Date Collected	Criteria*	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	17-Oct-12	17-Oct-12	17-Oct-12	17-Oct-12									
Polychlorinated Biphenyls by Method 808	82 (mg/kg)																	
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		38.3	32.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	19.1	25.8	0.639 /J/A	0.138	0.116 /J/A	0.536	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	38.3	32.1	ND	ND	ND	ND	ND	19.1	25.8	0.639	0.138	0.116	0.536	ND	ND	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB99-20 20 Feet	SB99-20-a 20 Feet	SB99-25 25 Feet	SB99-25-a 25 Feet	SB100-1 1 Foot	SB100-3 3 Feet	SB101-1 1 Foot	SB101-3 3 Feet	SB103-1 1 Foot	SB103-3 3 Feet	SB104-1 1 Foot	SB104-3 3 Feet	SB105-1 1 Foot	SB105-3 3 Feet	SB105-5 5 Feet	SB105-10 10 Feet	SB105-15 15 Feet
Lab Sample ID	Screening	67175.28	67175.29	67175.3	67175.31	67156.1	67156.11	67156.01	67156.02	67302.31	67302.32	67302.39	67302.4	67207.12	67207.13	67207.14	67260.01	67260.02
Date Collected	Criteria*	17-Oct-12	17-Oct-12	17-Oct-12	17-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																	
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.05	< 0.05	< 0.05	< 0.05	0.0294 J	< 0.05	0.177	< 0.05	< 0.05	< 0.05	0.174	< 0.05	6.37	0.115	0.376	< 0.05	< 0.05
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.162	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	$<~0.05~/\mathrm{J/E}$	< 0.05 /J/E	< 0.05 /J/E	<~0.05~/J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	ND	ND	ND	ND	0.0294	ND	0.177	ND	ND	ND	0.336	ND	6.37	0.115	0.376	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		1 Foot	SBB)696-1-a 1 Foot	SB106-3 3 Feet	SB106-3-a 3 Feet	SB106-5 5 Feet	SB106-5-a 5 Feet	SB106-10 10 Feet	SB106-15 15 Feet	SB107-1 1 Foot	SB107-3 3 Feet	SB107-5 5 Feet	SB107-10 10 Feet	SB-113-1' 1 Foot	SB-113-3' 3 Feet	SB-114-1' 1 Foot	SB-114-3' 3 Feet	SB-115-1' 1 Foot
Lab Sample ID	Screening	67207.2	67207.23	67207.21	67207.24	67207.22	67207.25	67260.03	67260.04	67241.04	67241.05	67285.01	67285.02	14-04-0671-47	14-04-0671-8A	14-04-0671-41	14-04-0671-42	14-04-0671-36
Date Collected	Criteria*	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	19-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14
Polychlorinated Biphenyls by Method 803	82 (mg/kg)																	_
Aroclor-1016		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1221		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1232		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1242		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1248		2.08 /J/A	0.842	1.5	1.02	1.6	2.18	< 0.05	< 0.05	66.9	2.52	0.0345 J	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1254		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.1	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1260		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor-1262		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051	< 0.05
Aroclor 1268		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA	NA
Total PCBs	1	2.08	0.842	1.5	1.02	1.6	2.18	ND	ND	66.9	2.52	0.0345	ND	1.1	ND	ND	ND	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-115-3' 3 Feet	SB-116-1' 1 Foot	SB-116-3' 3 Feet	SB-117-1' 1 Foot	SB-117-3' 3 Feet	SB-117-5' 5 feet	SB-118-1' 1 Foot	SB-118-3' 3 Feet	SB-118-5' 5 Feet	SB-118-10' 10 Feet	SB-118-15' 15 Feet	SB-118-20' 20 Feet	SB-119-1' 1 Foot	SB-119-3' 3 Feet	SB-119-5' 5 Feet	SB-120-1' 1 Foot	SB-121-1' 1 Foot	SB-121-3' 3 Feet
Lab Sample ID	Screening	14-04-0671-37	4-04-0671-2	4-04-0671-3	4-04-0671-23	14-04-0671-25	4-04-0671-2	14-04-0718-1	14-04-0718-2	14-04-0718-3	14-04-0718-4	14-04-0718-5	14-04-0718-6	14-04-0671-11	14-04-0671-13	14-04-0671-14	14-04-0671-2	14-04-0671-4	14-04-0671-5
Date Collected	Criteria*	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																		
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05 /M/M	< 0.051
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051
Aroclor-1248		< 0.05	< 0.05	< 0.05	45	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.11	< 0.05	< 0.05	0.17	0.64	1.1
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051
Aroclor-1260		< 0.05	< 0.05	< 0.05	4.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05 /M/M	0.068
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051
Aroclor 1268		NA	NA	NA	NA	NA	NA	NA	NA	NA									
Total PCBs	1	ND	ND	ND	49.5	ND	ND	ND	ND	ND	ND	ND	ND	0.11	ND	ND	0.17	0.64	1.168

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

																	\Box
		SB-121-4.5'	SB-122-1'	SB-123-1'	SB-124-1'	SB-124-1-a'	SB-128-1'	SB-129-1	SB-129-3	SB-129-5	SB-130-1	SB-130-1-a	SB-130-3'	SB-130-5'	SB-130-8'	DE011-022814	
		4.5 Feet	1 Foot	1 Foot	1 Foot	1 Foot	1 Foot	1 Foot	3 Feet	5 Feet	1 Foot	1 Foot	3 Feet	5 Feet	8 Feet	1 Foot	
Lab Sample ID	Screening	14-04-0671-48-A	14-04-0671-9	14-04-0671-10	14-04-0671-12	14-04-0671-15	14-04-0671-20	14-04-0718-11	14-04-0718-12	14-04-0718-13	14-04-0718-15	14-04-0718-17	14-04-0718-16	14-04-0718-18	14-04-0718-18	72408.01	
Date Collected	Criteria*	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	02/28/14	
Polychlorinated Biphenyls by Method 80	82 (mg/kg)																
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051 /M/M	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor-1248		0.68	11 /J/I	1.1	0.062	0.06	2.3	1200	19	0.18	490 /J/A	940	270	42	280	0.344	<
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	$< 0.051 \ /\text{M/M}$	20	0.49	< 0.05	9.6 /J/A	18 /J/I	6.3	0.65	< 0.5	< 0.05	<
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.051	< 0.05	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	<
Aroclor 1268		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.05	<
Total PCBs	1	0.68	11	1.1	0.062	0.06	2.3	1220	19	0.18	500	958	276	42.65	280	0.344	

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-132-1 1 Foot	SB-133-1 1 Foot	SB-134-1 1 Foot	SB-134-1-a 1 Foot	SB-136-1 1 Foot	SB-136-1-a 1 Foot	SB-137-1 1 Foot	SB-137-1-a 1 Foot	SB-138-1 1 Foot	SB-138-3 3 Feet	SB-141-1 1 Foot	SB-142-1 1 Foot	SB-143-1 1 Foot	SB-146-1 1 Foot
Lab Sample ID	Screening	74445.07	74445.10	74445.02	74445.03	74445.14	74445.15	74445.18	74445.19	74445.22	74637.01	74445.27	74445.30	77385.22	77385.16
Date Collected	Criteria*	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	06/17/15	06/17/15
Polychlorinated Biphenyls by Method 80	82 (mg/kg)														
Aroclor-1016		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.0253 <
Aroclor-1221		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Aroclor-1232		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Aroclor-1242		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Aroclor-1248		0.05	0.11	< 0.05	< 0.05	0.03 J	< 0.05	0.22 /J/A	0.50	5.74	< 0.05	0.36	0.23	0.72	0.853
Aroclor-1254		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.12	0.19 J	2.62	30.40	0.08	< 0.05	< 0.025	0.845
Aroclor-1260		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Aroclor-1262		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Aroclor 1268		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025 <
Total PCBs	1	ND	0.107	ND	ND	0.0274	ND	0.339	0.70	8.36	30.4	0.45	0.229	0.72	1.698

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-146-3 3 Feet	SB-147-5 5 Feet	SB-147-8 8 Feet	SB-148-1 1 Foot	SB-148-1-a 1 Foot	SB-148-3 3 Feet	SB-149-1 1 Foot	SB-149-1-a 1 Foot	SB-149-3 3 Feet	SB-149-5 5 Feet	SB-150-5 5 Feet	SB-150-8 8 Feet	SB-151-1 1 Foot	SB-151-3 3 Feet
Lab Sample ID	Screening	77385.17	77385.01	77385.02	77385.04	77385.05	77385.06	77385.10	77385.11	77385.12	77385.13	78821.03	78876.02	78682.19	78682.20
Date Collected	Criteria*	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	10/15/15	10/15/15	10/15/15	10/15/15
Polychlorinated Biphenyls by Method 80	82 (mg/kg)														
Aroclor-1016		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		831	1.020	< 0.025	11.80 /J/A	71.80	0.08	1.88	0.449	21.2	< 0.025	11.7	2.57	0.268	11.4
Aroclor-1254		0.025	0.511	< 0.025	4.43 /J/A	30.6	< 0.025	1.68	1.990	< 0.025	< 0.025	2.58	< 0.050	0.106	5.33
Aroclor-1260		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	831	1.531	ND	16.23	102.4	0.08	3.56	2.439	21.2	ND	14.28	2.57	0.374	16.73

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	SB-151-3a 3 Feet 78682.21 10/15/15	SB-151-5 5 Feet 78821.04 10/15/15	SB-151-8 8 Feet 78876.03 10/15/15	SB-152-1 1 Foot 78682.14 10/15/15	SB-152-3 3 Feet 78682.12 10/15/15	SB-152-3a 3 Feet 78682.13 10/15/15	SB-152-5 5 Feet 78821.02 10/15/15	SB-154-1 1 Foot 78682.06 10/15/15	SB-154-3 3 Feet 78682.07 10/15/15	SB-154-5 5 Feet 78821.01 10/15/15	SB-154-8 8 Feet 78876.01 10/15/15	SB-155-1 1 Foot 78682.11 10/15/15	SB-155-3 3 Feet 78682.1 10/15/15	SB-156-1 1 Foot 80593.17 03/10/16
Polychlorinated Biphenyls by Method 80	82 (mg/kg)	1						1 11 11 11							
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1248		2.33	1.89	6.94	0.74	1.72	1.95	0.237	< 0.1	< 0.05	1.11	< 0.05	< 0.25	6.82	0.882
Aroclor-1254		0.601	0.376	< 0.05	0.296	0.582	1.17	0.084	1.26	< 0.05	0.367	< 0.05	< 0.25	2.43	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05
Total PCBs	1	2.931	2.266	6.94	1.035	2.302	3.12	0.321	1.26	ND	1.11	ND	ND	9.25	0.882

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Lab Sample ID Date Collected	Screening Criteria*	SB-156-3 3 Feet 80593.19 03/10/16	SB-157-1 1 Foot 80593.11 03/10/16	SB-157-3 3 Feet 80593.15 03/10/16	SB-158-1 1 Foot 80593.04 03/10/16	SB-158-3 3 Feet 80593.05 03/10/16	SB-159-1 1 Foot 80593.08 03/10/16	SB-159-3 3 Feet 80593.09 03/10/16	SB-160-1 1 Foot 80592.09 03/10/16	SB-160-3 3 Feet 80592.10 03/10/16	Sb-161-1 1 Foot 80592.04 03/10/16	SB-161-3 3 Feet 80592.05 03/10/16	SB-162-1 1 Foot 80592.24 03/10/16	SB-162-3 3 Feet 80592.26 03/10/16
Polychlorinated Biphenyls by Method 8	082 (mg/kg)	•			•	•	•	•	•	•	•	•	•	•
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.05	1.08	< 0.05	1.66	< 0.05	< 0.05	0.276	0.337	0.0526	< 0.05	< 0.05	0.113	< 0.05
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.179	< 0.050	< 0.05	< 0.05	< 0.05	0.059	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0811	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCB	s 1	ND	1.08	ND	1.66	ND	ND	0.276	0.337	0.0526	ND	ND	0.172	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-163-1	SB-163-2.5	SB-164-1	SB-169-1	SB-176-1	SB-177-1	SB-177-3	SB-177-3-a	SB-178-1	SB-178-3	SB-178-3-a	SB-179-1	SB-179-3	SB-179-3-a	SB-180-1	
		1 Foot	2.5 Feet	1 Foot	1 Foot	1 Foot	1 Foot	3 Feet	3 Feet	1 Foot	3 Feet	3 Feet	1 Foot	3 Feet	3 Feet	1 Foot	
Lab Sample ID	Screening	80592.16	80592.18	81153.48	81153.50	81153.52	81153.04	81153.06	81153.05	81153.11	81153.13	81153.12	81153.17	81153.19	81153.18	81153.24	
Date Collected	Criteria*	03/10/16	03/10/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	
Polychlorinated Biphenyls by Method 80	82 (mg/kg)										_					_	
Aroclor-1016		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1221		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1232		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1242		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1248		0.0419 J	0.0675 J	< 0.05	< 0.05	0.329 /M/M	0.985	< 0.05	< 0.05	< 0.05	0.0604 /J/A	0.180	< 0.05	0.150	< 0.05	< 0.05	
Aroclor-1254		0.05	0.1	< 0.05	0.336	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1260		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor-1262		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Aroclor 1268		< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
Total PCBs	1	0.0419	0.0675	ND	0.336	0.329	0.985	ND	ND	ND	0.0604	0.18	ND	0.15	ND	ND	

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

		SB-180-2 2 Feet	SB-180-2-a 2 Feet	SB-173-0.5 0.5 Feet	SB-182-0.5 0.5 Feet	SB-205-0.5 0.5 Feet	SB-205-0.5a 0.5 Feet	SB-206-0.5 0.5 Feet	SB-207-0.5 0.5 Feet	SB-210-0.5 0.5 Feet	SB-215-0.5 0.5 Feet
Lab Sample ID	Screening	81153.26	81153.25	83803.27	83803.16	83803.18	83803.19	83803.21	83803.25	83803.23	83803.29
Date Collected	Criteria*	04/14/16	04/14/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Biphenyls by Method 803	82 (mg/kg)										
Aroclor-1016		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		0.394 /J/A	0.252	0.212	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.031 J	< 0.025
Aroclor-1254		0.05	< 0.05	0.099	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1260		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor 1268		0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	0.394	0.252	0.3105	ND	ND	ND	ND	ND	0.031	ND

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram

NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

- A Field duplicate RPD exceeded established criteria
- B The analyte was found in an associated blank, as well as in the sample.
- D Percent difference of matrix spike duplicate exceeded established criter
- G Surrogate recovery less than 10%
- H Holding time was exceeded by more than 2x.
- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present
- V The analye was detected in the associate equipment rinsate blank.

Table A-3 Summary of PCB Resuts in Groundwater Former Die Cast Area

	Date	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Aroclor-1262
Location ID	Collected	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L
MW-2S	03/31/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	08/31/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	04/08/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	08/31/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	03/29/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S MW-2S	09/05/12 03/13/13	<1.0 <1.0							
MW-2S	08/12/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	03/27/14	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]	<0.96 [<0.96]
MW-2S	08/05/14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2S	04/02/15	< 0.95	<0.95	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95
MW-2S	07/15/15	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96
MW-200SA	06/08/06	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	06/15/07	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA MW-200SA	08/22/08 06/24/09	<1.0 <1.0							
MW-200SA	03/31/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	08/31/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	04/08/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	08/31/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	03/29/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	09/05/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	03/13/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA	08/12/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-200SA MW-200SA	03/27/14 08/05/14	<0.96 <1.0							
MW-200SA	04/02/15	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95
MW-200SA	07/15/15	<0.97	<0.97	<0.97	<0.97	<0.97	<0.97	<0.97	<0.97
MW-408S	03/30/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	09/01/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	04/08/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	09/01/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	03/29/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	09/05/12	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]
MW-408S MW-408S	03/13/13 08/12/13	<1.0 <1.0							
MW-408S	03/27/14	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96
MW-408S	08/05/14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-408S	04/02/15	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95
MW-408S	07/14/15	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95	< 0.95
MW-409S	03/30/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	09/01/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	04/08/11	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]
MW-409S MW-409S	09/01/11 03/29/12	<1.0 [<1.0] <1.0							
MW-409S	09/05/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	03/13/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	08/12/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	03/27/14	< 0.96	<0.96	<0.96	<0.96	<0.96	<0.96	< 0.96	<0.96
MW-409S	08/05/14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-409S	04/02/15	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95	<0.95
MW-409S	07/15/15	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96
MW-411S	04/08/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-411S	09/09/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-411S MW-411S	03/30/12 09/07/12	<1.0 <1.0							
MW-420S	03/30/12	<1.0	<1.0	<1.0	<1.0	11	<1.0	<1.0	<1.0
MW-420S	09/07/12	<1.0	<1.0	<1.0	8.4	7.3	<1.0	<1.0	<1.0
MW-420S	03/14/13	<1.0	<1.0	<1.0	<1.0	7.2	<1.0	<1.0	<1.0
MW-420S	08/15/13	<1.0	<1.0	<1.0	<1.0	6.9	<1.0	<1.0	<1.0
MW-420S	03/28/14	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96
MW-420S	08/05/14	<1.0	<1.0	<1.0	<1.0	6.1	<1.0	<1.0	<1.0
MW-420S Filtered	08/05/14	<1.0	<1.0	<1.0	<1.0	4.1	<1.0	<1.0	<1.0
MW-420S	04/02/15	<0.95	<0.95	<0.95	<0.95	7.2	<0.95	<0.95	<0.95
MW-420S Filtered MW-420S	04/02/15	<0.96	<0.96	<0.96	<0.96	3.1	<0.96	<0.96	<0.96
MW-420S Filtered	07/15/15 7/15/15	<0.96 <0.98	<0.96 <0.98	<0.96 <0.98	<0.96 <0.98	4.1 3.7	<0.96 <0.98	<0.96 <0.98	<0.96 <0.98
Notes:	7/10/10	10.00	~0.00	~0.00	~0.00	0.1	-0.00	10.00	\0.50

μg/L = micrograms per liter
<XX = the analyte was not detected above the laboratory reporting limit showr</p>
[] = a field duplicate sampling result
ID = Identification

Risk-Based Disposal Approval Application East Building Die Cast Area 666 East Dyer Road Santa Ana, California

APPENDIX B

OCTOBER 2015, MARCH-APRIL 2016, AND AUGUST 2016 DIE CAST AREA ADDITIONAL SAMPLING REPORT

September 15, 2016

Ms. Nancy Olson-Martin Sanitary Engineering Associate Santa Ana Regional Water Quality Control Board 3737 Main Street, Suite 500 Riverside, CA 92501-3339

RE: October 2015, March-April 2016, and August 2016 Die Cast Area Additional Sampling Report

Former Die Cast Area ITT Dyer Road Facility 666 East Dyer Road Santa Ana, California

Dear Ms. Olson-Martin:

This letter report presents the results of the October 2015 additional sampling activities and the March-April 2016 and August 2016 data gap sampling activities for the former Die Cast Area. Based on the findings presented in the *Remedial Investigation (RI) Report* (AECOM, 2011a), *RI Addendum Report* (AECOM 2012), 2012 *Additional Sampling Report* (AECOM, 2013), *Supplemental Sampling Report* (AECOM 2014a), additional sampling conducted in June 2015, and comments received by the *Santa Ana Regional Water Quality Control Board* (SARWQCB), additional sampling was conducted at the site in October 2015 and March and April 2016 to further characterize the lateral and vertical extent of polychlorinated biphenyls (PCBs) at the former Die Cast Area (Figure 1).

Field sampling and analysis was conducted as described in the *RI Work Plan* (AECOM, 2010), *RI Addendum Work Plan* (AECOM, 2011b), and *Supplemental Sampling Work Plan and Response to Comments from the Santa Ana Regional Water Quality Control Board on the 2014 Die Cast Area Supplemental Sampling Report, East Building Former Die Cast Area, ITT Dyer Road ICS Facility, 666 East Dyer Road, Santa Ana, California (AECOM, 2014b), as well as the Data Gap Closure Work Plan, Former Die Cast Area, ITT Dyer Road Facility (AECOM, 2016). This report includes a description of the October 2015 additional sampling work and presents the analytical results (Table 2 and Figure 2), a description of the March-April 2016 sampling work and presents those analytical results (Table 3 and Figure 3), and a description of the August 2016 sampling work and presents those analytical results (Table 4 and Figures 4A and 4B). Table 5 and Figure 5 present the results of all cumulative PCB soil sampling conducted at the former Die Cast Area by AECOM since December 2010.*

Pre-Field Activities

Work Plan Development and SARWQCB Approval

The proposed additional sampling locations and sample depths for the October 2015 additional sampling activities were submitted via email to the SARWQCB on September 15, 2015 (ITT, 2015). Approval was provided by SARWQCB via email on September 23, 2015 (SARWQCB, 2015) and by United States Environmental Protection Agency (USEPA) via email on September 24, 2015 (USEPA, 2015). Subsequent to those sampling activities, the Data Gap Closure Work Plan (AECOM, 2016) was distributed to the SARWQCB and USEPA and subsequently approved on February 5, 2016.

Permit Requirements

No permits were required for the work performed.

Utility Clearance

AECOM notified Underground Service Alert (USA) of Southern California after marking the boring locations on the ITT property. AECOM was issued Dig Alert ticket number B52850321-00B (dated October 12 2015) prior to initiation of October 2015 drilling activities. AECOM was issued Dig Alert ticket number A60680622-00A (dated March 8, 2016 prior to initiation of March 2016 drilling activities, and AECOM was issued Dig Alert ticket number A61020319-00A (dated April 11, 2016) prior to initiation of April 2016 drilling activities. A copy of the Dig Alert tickets are provided in Attachment A.

A geophysical survey was conducted in order to clear each intrusive sampling locations. Geophysical methods including ground penetrating radar and a magnetic survey were used to identify potential subsurface features that may interfere with safe drilling. As an additional measure to prevent drilling into utilities, a hand auger was used to advance each borehole from the first soil encountered under the asphalt or to a depth of 5 feet below ground surface (bgs).

Health and Safety Procedures

All work was conducted in accordance with the Health and Safety Plan (HASP) which was included as Appendix C of the *Remedial Investigation Work Plan* (AECOM, 2010). The HASP was updated with revised project contacts and safety health and environment (SH&E) standard operating procedures prior to commencement of field activities. The HASP was reviewed daily prior to field activities during the drilling and sampling program. Topics covered included personal protective equipment (PPE) requirements, potential hazards associated with the work, equipment decontamination procedures, existing work zones and the hospital route map. Tailgate Safety Briefing Sign-In Logs were completed daily by all field staff.

Field Activities

Sampling Collection Procedures

All samples were collected in laboratory-supplied glass containers, placed on ice in an insulated cooler, and submitted to American Environmental Testing Laboratory (AETL) for analysis. AETL is a National Environmental Laboratory Accreditation Program (ELAP) certified laboratory. Table 1 presents a summary of samples that were collected and analyzed. In order to confirm the vertical extent of PCBs, samples were collected at various depths from each borehole and archived pending initial sample results. If the initial sample analyzed exceeded the screening level proposed in the *RI Work Plan* or the *RI Report* (AECOM, 2010; AECOM, 2011a), the next deepest, archived sample was analyzed. Provided in Table 1 is a summary of all samples analyzed as well as sample collection rationale.

Asphalt and Concrete Sampling

All boring locations within asphalt and concrete areas were inspected for staining prior to drilling. Surface samples for PCB analysis were collected by using a hammer drill to drill to a depth of approximately ½ inch to generate a uniform, finely ground powder, in accordance with the RI Work Plan (AECOM, 2010) and the USEPA Region 1 Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (PCBs) (USEPA, 2011). Several holes were drilled at each location until an adequate sample volume (approximately 30 grams) was accumulated. The powdered asphalt or concrete was then collected using a clean decontaminated stainless steel scoopula. The samples were placed in laboratory supplied glass jars and chilled coolers and submitted to AETL. All asphalt samples underwent PCB analysis by EPA Method 8082 with EPA extraction method 3540C. All asphalt and concrete core investigation-derived waste (IDW) was stored onsite in Department of Transportation (DOT)-approved 16-gallon drums and properly labelled in accordance with State of California regulations.

Borehole Drilling Soil Sampling and Lithologic Classification

After collection of surface samples, boreholes were advanced using a hand auger to a maximum depth of 3 feet bgs. When the target sampling zone was reached, the hand auger was decontaminated and a soil sample was collected. Soil samples were transferred to a jar and placed on ice in an insulated cooler for delivery to AETL under strict chain of custody procedures.

On-site field personnel working under the supervision of a California Professional Geologist (PG) examined the remaining soil not submitted for laboratory analysis for lithologic description using the Unified Soil Classification System (USCS) and head-space monitoring using a photoionization detector (PID). The lithologic description and PID readings were logged on the borehole logs provided in Attachment B. In addition, the samples were observed for indications of potential soil impact (i.e., odor, staining), and other relevant characteristics.

Quality Control Procedures

Quality assurance/quality control (QA/QC) samples were submitted to AETL for analytical testing. QA/QC samples collected in the field included the following: field duplicates, equipment blanks, matrix spike and matrix spike duplicates.

Chain of custody documentation was completed and signed in the field by the sampler to provide evidence of sample custody and allow traceability of the sample handling and shipment history. Copies of the chain of custody forms are provided in Attachment C.

Borehole Abandonment

After completion of sampling at each location, the boreholes were filled from the total depth to one-foot below surface with bentonite chips and hydrated with potable water obtained from an on-site potable water source. Non-shrink concrete grout or asphalt was used to seal off the top foot of each borehole.

Field Documentation

Documentation of field activities was maintained in field notebooks, field forms and by photo documentation. Field forms included:

- 1) Data Quality Control Reports;
- 2) Daily field notes;
- 3) Borehole Logs (Attachment B);
- 4) Chain of custody forms (provided with the analytical data reports in Attachment C); and,
- 5) IDW Management Form (Attachment D).

Equipment Decontamination

Equipment used during the investigation to collect soil and pavement samples arrived either new or clean and decontaminated. Decontamination was performed on field equipment prior to conducting field activities, between sample locations, and at the completion of field activities in accordance with the *Remedial Investigation Work Plan* (AECOM, 2010).

Investigation-Derived Waste Management and Disposal

All IDW was managed in accordance with local, state, and federal requirements. All IDW (soil, pavement and decontamination fluids) was drummed, labeled, and stored in two DOT-approved 55-gallon drums at a secure location. All IDW from the October 2015 sampling event was removed from the site on December 14, 2015 and IDW from the March-April 2016 sampling event was removed from the site on June 22, 2016. All waste was transported to an approved facility that is permitted/licensed to accept these

waste streams. The waste manifests are provided in Attachment D. The IDW from the August 2016 sampling event has not yet been removed from the site.

Survey

Horizontal and vertical coordinates for the six October 2015 boring locations were surveyed by a California licensed surveyor (Dulin & Boynton) on October 15, 2015. The vertical datum was surveyed in accordance with 1988 North American Vertical Datum (NAVD88), Orange County BM#SA-248-70 Monument. The horizontal datum was surveyed in accordance with 1983 North American Datum (NAD83), Zone 6. Survey data are included in Attachment E.

Summary of Analytical Results

October 2015 Sampling Activities

During the October 2015 sampling, concentrations of Total PCBs (the sum of all detected Aroclors from a given sample), ranged from non-detect to 16.73 milligrams per kilogram (mg/kg). Aroclor 1248 was detected at concentrations ranging from 0.194 mg/kg to 11.7 mg/kg. Aroclor 1254 was detected at concentrations ranging from 0.084 mg/kg to 5.33 mg/kg. Aroclors 1016, 1221, 1232, 1242, 1260, 1262 and 1268 were not detected above laboratory reporting limits in any samples. See Figure 2 and Table 2 for sample results. Figure 5 and Table 5 present a cumulative summary of all PCB sampling results in soil.

Data Quality

AECOM performed QA/QC checks of field and laboratory procedures used in collecting and analyzing the data to provide assurance that the data meet project Data Quality Objective requirements. Any data requiring qualification as a result of the validation process were assigned data flags. The validation flags indicate how any QC excursions may have impacted the usability of the data. An explanation of all data qualifiers is provided in each table. Additional information regarding data qualifiers generated during the validation process is provided in the associated data assessment reports (see Attachment B). Three QC excursions were noted. Aroclor-1254 results in sample SB-152-3 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40 percent (actual value was 67 percent). Aroclor-1248 and Aroclor-1254 results in sample SB-151-3 were qualified "/J/A" since the relative percent difference between the primary and field duplicate samples exceeded the established criteria of 40 percent (actual values were 132 percent and 159 percent, respectively). These QC excursions did not result in the rejection of any data. All data were found to be compliant and adequate for use in this investigation.

Data generated are acceptable and defensible and can be used for their intended purposes. The laboratory data sheets and chain of custody forms for samples collected from the former Die Cast Area sampling are also provided in Attachment C

Evaluation of Results by Location

SB150. Two samples were collected at this location from 5 feet bgs, and 8 feet bgs to refine vertical distribution of PCBs adjacent to SB-146. The total PCBs concentration for the sample collected from the 5 foot sample was 14.28 mg/kg. The total PCBs concentration for the sample collected from the 8 foot sample was 2.57 mg/kg.

SB151. Six samples (one duplicate) were collected at this location from the surface, 1 foot, 3 feet, 5 feet, and 8 feet bgs to refine lateral distribution of PCBs to the west and north of SB-146. The total PCBs concentration for the sample collected from the surface sample was 1.14 mg/kg. The total PCBs concentration for the sample collected from the 1 foot sample was 0.374 mg/kg. The total PCBs concentration for the sample collected from the 3 foot sample was 16.73 mg/kg. The total PCBs concentration for the sample collected from the 5 foot sample was 2.266 mg/kg. The total PCBs concentration for the sample collected from the 8 foot sample was 6.94 mg/kg.

SB152. Six samples (one duplicate) were collected at this location from the surface, 1 foot, 3 feet, 5 feet bgs, and 8 feet bgs to refine lateral distribution of PCBs to the west and north of SB-148. The total PCBs concentration for the sample collected from the surface sample was 0.64 mg/kg. The total PCBs concentration for the sample collected from the 1 foot sample was 1.04 mg/kg. The total PCBs concentration for the sample collected from the 3 foot sample was 3.12 mg/kg. The total PCBs concentration for the sample collected from the 5 foot sample was 0.321 mg/kg. Based on the result of the 5 foot sample, the 8 foot sample was not analyzed in accordance with the table included in the request for additional sampling (ITT, 2015).

SB153. A single sample was collected at this location from the surface to refine lateral distribution of PCBs to the west of SB-149. The total PCBs concentration for this sample was 0.52 mg/kg.

SB154. Five samples were collected at this location from the surface, 1 foot, 3 feet, 5 feet bgs, and 8 feet bgs to refine lateral distribution of PCBs to the south of SB-149. The total PCBs concentration for the sample collected from the surface sample was 0.32 mg/kg. The total PCBs concentration for the sample collected from the 1 foot sample was 1.26 mg/kg. PCBs were not detected at concentrations greater than the laboratory reporting limit in the 3-foot sample. The total PCBs concentration for the sample collected from the 5 foot sample was 1.48 mg/kg. PCBs were not detected at concentrations greater than the laboratory reporting limit in the 8-foot sample.

SB155. Three samples were collected at this location from the surface, 1 foot, and 3 feet to refine lateral distribution of PCBs to the east of SB-149. The total PCBs concentration for the sample collected from

the surface sample was 0.88 mg/kg. PCBs were not detected at concentrations greater than the laboratory reporting limit in the 1-foot sample. The total PCBs concentration for the sample collected from the 3-foot sample was 9.3 mg/kg. This boring encountered refusal due to a below grade concrete structure at 3 feet bgs.

March-April 2016 Data Gap Closure Sampling

Based on the October 2015 sampling results as presented on Table 2 and Figure 2, additional soil, asphalt, and concrete sampling was proposed to further characterize and delineate the lateral and/or vertical extent of PCBs above 1 mg/kg. Figure 3 presents the sampling locations and both Figure 3 and Table 3 present the sampling results..

Summary of Analytical Results

A total of 68 soil and 71 pavement samples (including duplicates) were collected from 62 sample locations during the March-April 2016 field investigation program. Of these, 32 soil sample and 66 pavement samples were analyzed. Since December 2010, a total of 231 sample locations and 770 primary samples (including 139 pavement samples) have been analyzed as a component of the Die Cast Area RI. During the March-April 2016 sampling, concentrations of Total PCBs (the sum of all detected Aroclors from a given sample), ranged from non-detect to 229 mg/kg. Aroclor 1248 was detected at concentrations ranging from 0.0526 mg/kg to 132 mg/kg. Aroclor 1254 was detected at concentrations ranging from 0.0578 mg/kg to 96.5 mg/kg. Aroclor 1260 was detected at concentrations ranging from 0.0811 to 0.632 mg/kg. Aroclors 1016, 1221, 1232, 1242, 1262 and 1268 were not detected above laboratory reporting limits in any samples. See Figure 3 and Table 3 for sample results. Figure 5 and Table 5 present a cumulative summary of all PCB sampling results in soil.

Data Quality

Results of Aroclor 1248 in samples SB-178-3 and SB-180-2 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40% (99.5 and 43.9%, respectively). These qualifiers indicate imprecision with field sampling techniques, laboratory methodology, or instrumentation, and the results should be considered estimated. Results of Aroclor 1016 in sample SB-176-1 were qualified "/M/M" due to high recovery in the associated matrix spike sample above the established criteria of 10-165% (348%). These qualifiers indicate the data should be considered biased high. Results of Aroclor 1248 and Aroclor 1254 in sample SB-210-0-0.5 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40% (57.8 and 49.7%, respectively). These qualifiers indicate imprecision with field sampling techniques, laboratory methodology, or instrumentation, and the results should be considered estimated. In sample SB-168-0.05, detected compounds were qualified "/J/G" and non-detected compounds were qualified "/R/G" due to low

surrogate recovery below 10% (0%). These qualifiers indicate the detections are estimations and should be considered extremely biased low, and the non-detections should be rejected.

With the exception of the non-detected compounds in sample SB-168-0.05, the QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the remaining data generated are acceptable and defensible and can be used for their intended purposes. The laboratory data sheets and chain of custody forms for samples collected from the former Die Cast Area sampling are also provided in Attachment C

Evaluation of Results by Area

Inside West Building (SB-156, SB-157, SB-158, SB-159, SB-177, SB-178, and SB-179). Samples were collected in these locations from the surface (concrete) to a depth of 10 feet bgs. The 1-foot and 3-foot samples were initially analyzed from locations SB-156 through Sb-159. At all of these locations, the total PCBs concentration in the 3-foot sample was less than the screening value of 1 mg/kg (see Table 3 and Figure 3). The total PCBs concentration for the 1-foot bgs samples at locations SB-157 and SB-158 were 1.08 mg/kg and 1.68 mg/kg, respectively. As a result, the surface concrete sample was analyzed from each location and the resulting total PCBs concentration was 0.178 mg/kg for SB-157 and PCB aroclors were not detected in the surface concrete sample collected from SB-158. Because the total PCBs concentration in the 1-foot samples collected from SB-157 and SB-158 was greater than 1 mg/kg, additional sampling locations were added to the west. Samples were collected from the surface and up to 10 feet bgs. The 1-foot and 3-foot samples for those locations were analyzed, with resulting total PCBs concentrations less than the screening value of 1 mg/kg (see Table 3 and Figure 3). Additionally, one location was added in the West Building, to the south of SB-159. The 1-foot and 3-foot samples were analyzed for PCB aroclors, with the resulting total PCBs concentration less than the screening value of 1 mg/kg.

Asphalt Area Between the Die Cast Building and the West Building (SB-160, SB-161, SB-162, SB-163, and SB-180). Samples were collected from the surface to a depth of 10 feet bgs (refusal was encountered at 2.5 feet bgs at location SB-163). The surface, 1-foot, and 3-foot samples (2.5-foot for SB-163) were analyzed for PCB aroclors. The total PCBs concentration for the surface asphalt, 1-foot, and 3-foot samples at locations SB-160 and SB-161 were less than the screening value of 1 mg/kg. The total PCBs concentration for the surface asphalt, 1-foot, and 3-foot samples at location SB-162 were also less than the screening value of 1 mg/kg. The total PCBs concentration for the surface asphalt sample at location SB-163 was 1.83 mg/kg (in a duplicate sample; PCB aroclors were not detected above the laboratory reporting limit in the primary sample). The total PCBs concentrations for the 1-foot and 2.5-foot bgs samples were less than the screening value of 1 mg/kg. As a result of the surface asphalt total PCBs concentration at location SB-163, an additional sampling location was added just south of this location (SB-180). The surface asphalt, 1-foot, and 2-foot samples were analyzed for PCB aroclors. The

total PCBs concentration from the surface asphalt sample was 2.84 mg/kg, although the 1-foot and 2-foot samples had total PCBs concentrations less than the screening value of 1 mg/kg.

East Building (SB-164 through SB-176, SB-181 through SB-217). Concrete surface samples were collected at 50 locations to further characterize the East Building. In addition, at three locations (SB-164, SB-169, and SB-176), a concrete sample was collected from a core at a depth of 1.5-inches below the concrete surface and a soil sample was collected at a depth of 1-foot bgs. The total PCBs concentrations in the surface concrete samples ranged from less than the laboratory reporting limit to 228.5 mg/kg (SB-165). The total PCB concentrations for the 1.5-inch concrete samples at locations SB-164, SB-169, and SB-176 were less than the laboratory reporting limit, 0.172 mg/kg, and 0.05 mg/kg, respectively. The total PCBs concentrations from the 1-foot samples from those same samples were less than the screening value of 1 mg/kg.

August 2016 Data Gap Closure Sampling

Based on the March-April 2016 sampling results as presented on Table 3 and Figure 3, concrete and soil sampling was conducted to further characterize the concrete and soil within the East Building. Figures 4A and 4B present all sample locations within the East Building. Table 4 presents the sampling results for the sampling activities conducted in August 2016.

Summary of Analytical Results

A total of 64 concrete samples (including duplicates were collected from 58 sampling locations during the August 2016 field investigation program. In addition, 8 soil samples were collected from 7 sampling locations. All samples were collected from the East Building. Since December 2010, a total of 297 sample locations and 841 primary samples (including 197 pavement/concrete samples) have been analyzed as a component of the Die Cast RI. During the August 2016 sampling, concentrations of Total PCBs ranged from non-detect to 100.9 mg/kg. Aroclor 1248 was detected at concentrations ranging from 0.031 mg/kg to 50.9 mg/kg. Aroclor 1254 was detected at concentrations ranging from 0.099 mg/kg to 567 mg/kg. The majority of concrete samples had Total PCB concentrations greater than 1 (44 of 58 locations). None of the soil samples had Total PCB concentrations greater than 1, which is consistent with previous soil sampling results beneath the East Building. See Figures 4A and 4B and Table 4 for sample results. Figure 5 and Table 5 present a cumulative summary of all PCB sampling results in soil.

Data Quality

Detections of Polychlorinated biphenyls in sample SB-225-0.05a were qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (228%). These qualifiers indicate the results are overestimations and should be considered biased high. Detections of Polychlorinated biphenyls in samples SB-245-0.05 and SB-254-0.05 were qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (6,902 and 6960%, respectively). These qualifiers indicate the results are over-estimations

and should be considered biased high. Results of Aroclor 1016 and Aroclor 1260 in sample SB-260-0.05 were qualified "/M/M" due to high recovery in the associated matrix spike sample above the established criteria of 10-165% (328 and 220%, respectively%). These qualifiers indicate the data should be considered biased high. Detections of Polychlorinated biphenyls in samples SB-268-0.05 and SB-243-0.05 were qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (8,178 and 540%, respectively). These qualifiers indicate the results are over-estimations and should be considered biased high.

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the remaining data generated are acceptable and defensible and can be used for their intended purposes. The laboratory data sheets and chain of custody forms for samples collected from the former Die Cast Area sampling are also provided in Attachment C

If you have any questions, please contact Jeff Stanek of ITT at (949) 562-7401 or jeffrey.stanek@itt.com. The undersigned certifies that he or she has reviewed the attached document and that the document is in material compliance with the requirements of the Santa Ana Regional Water Quality Control Board. To the best of his or her knowledge, this Report is also in material compliance with applicable local, State and Federal requirements, guidelines and regulations. The data presentations contained herein are consistent with AECOM standards and generally accepted practices in the environmental profession.

Chris Cavers

Deputy Project Manager

(Ring Cavers

Crispin Wanyoike, P.E. Project Manager

10 of 11 September 2016

Figure	<u>Title</u>
1	Site Plan
2	October 2015 Additional PCB Sampling Results
3	March-April 2016 Data Gap PCB Sampling Results
4A	East Building Concrete Characterization Results, North Portion
4B	East Building Concrete Characterization Results, South Portion
5	Die Cast Area PCB Sampling Results in Soil – December 2010 through August 2016

<u>Table</u>	<u>Title</u>
1	Additional Sampling Summary
2	Summary of Analytical Results – October 2015 Additional Sampling
3	Summary of Analytical Results – March-April 2016 Data Gap Sampling
4	Summary of Analytical Results – August 2016 Data Gap Sampling
5	PCB Sampling Results in Soil – December 2010 through August 2016

Attachment	<u>Title</u>
A	Dig Alert Tickets
В	Chain of Custody Forms, Analytical/Laboratory Data, and Data Assessment Reports
C	Boring Logs
D	IDW Management Form and Manifests
Е	Survey Data

References

AECOM, 2010. *Remedial Investigation Work Plan*, ITT Dyer Road Facility, Santa Ana, California. December 17, 2010.

AECOM, 2011a. Remedial Investigation Report: East Building Die Cast Area, ITT Dyer Road Facility, Santa Ana, California. May 6.

AECOM, 2011b. *Remedial Investigation Addendum Work Plan*, ITT Dyer Road Facility, Santa Ana, California. December 16.

AECOM, 2012. Remedial Investigation Addendum Report: East Building Die Cast Area, ITT Dyer Road Facility, Santa Ana, California. May 1.

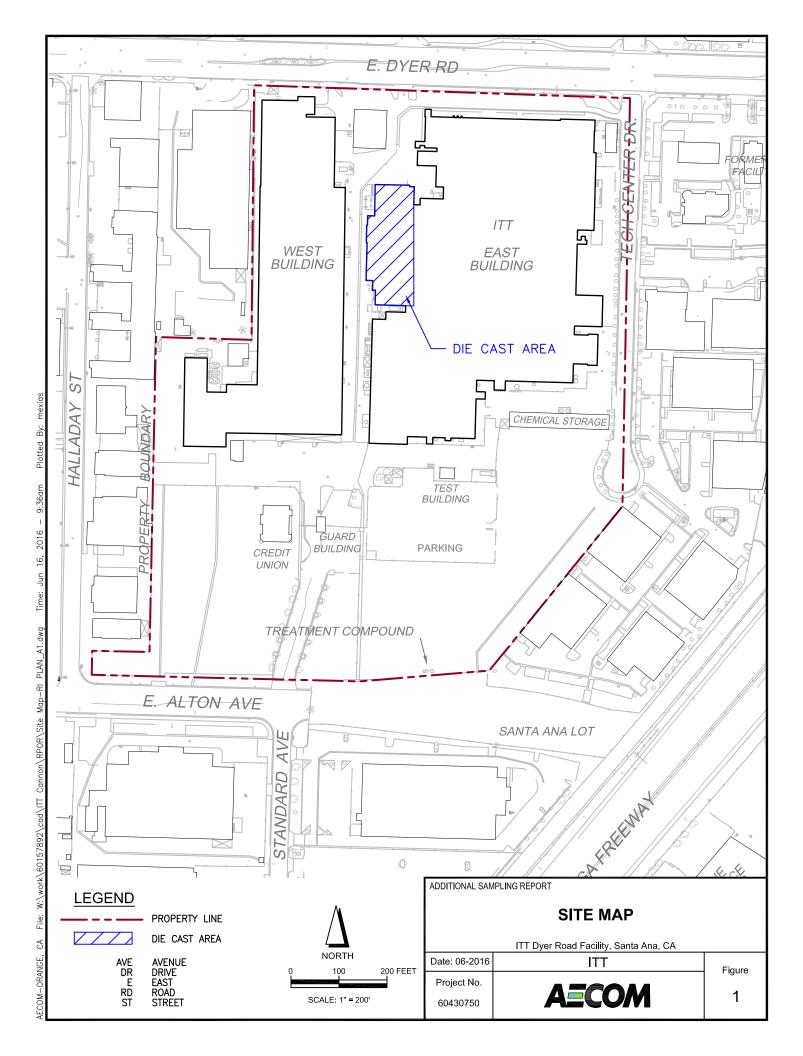
AECOM, 2013. 2012 Additional Sampling Report, East Building Die Cast Area, ITT Dyer Road ICS Facility, 666 East Dyer Road, Santa Ana, California. January 25.

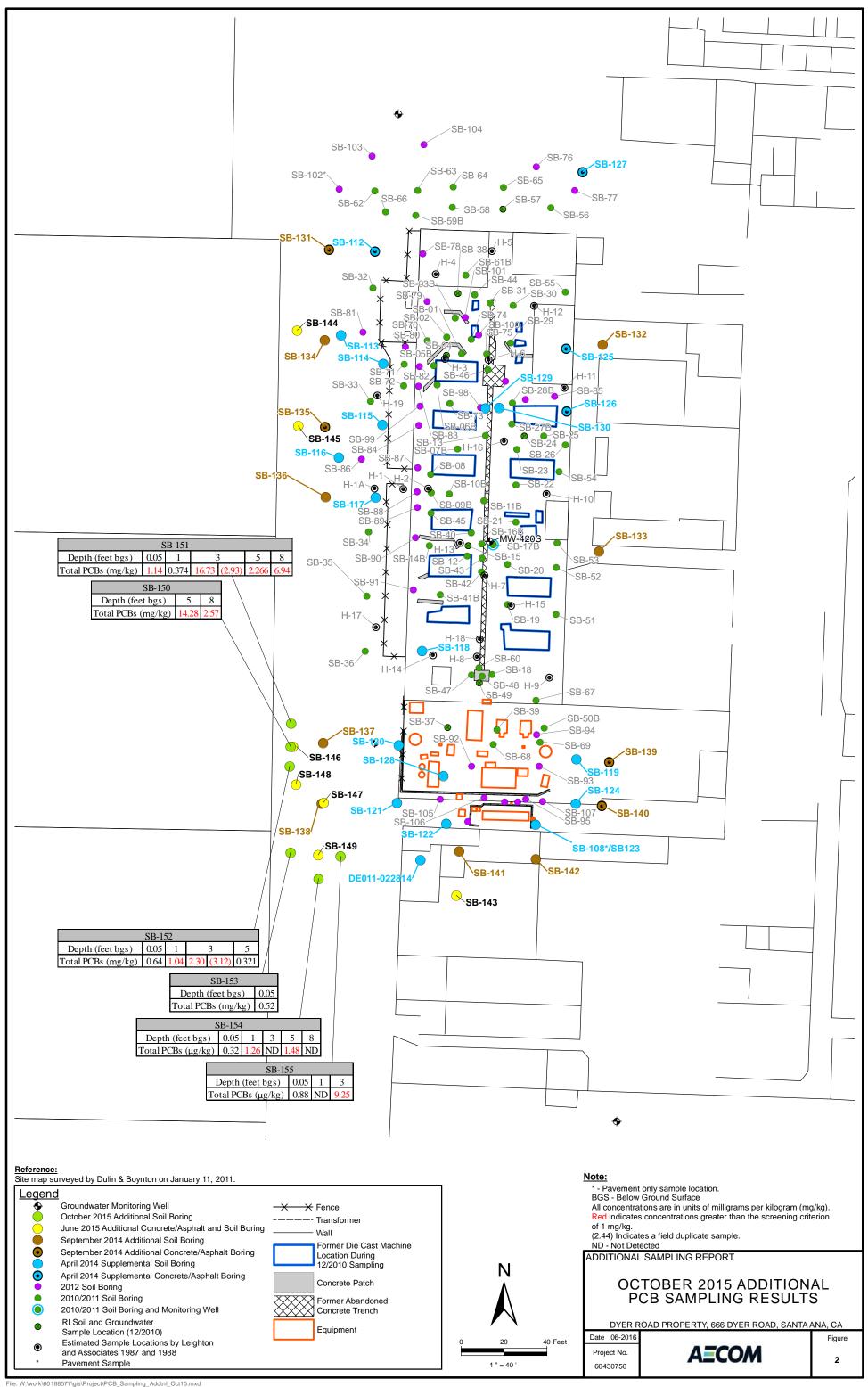
AECOM, 2014a. 2014 Die Cast Area Supplemental Sampling Report, East Building Former Die Cast Area, ITT Dyer Road ICS Facility, 666 East Dyer Road, Santa Ana California. May 28.

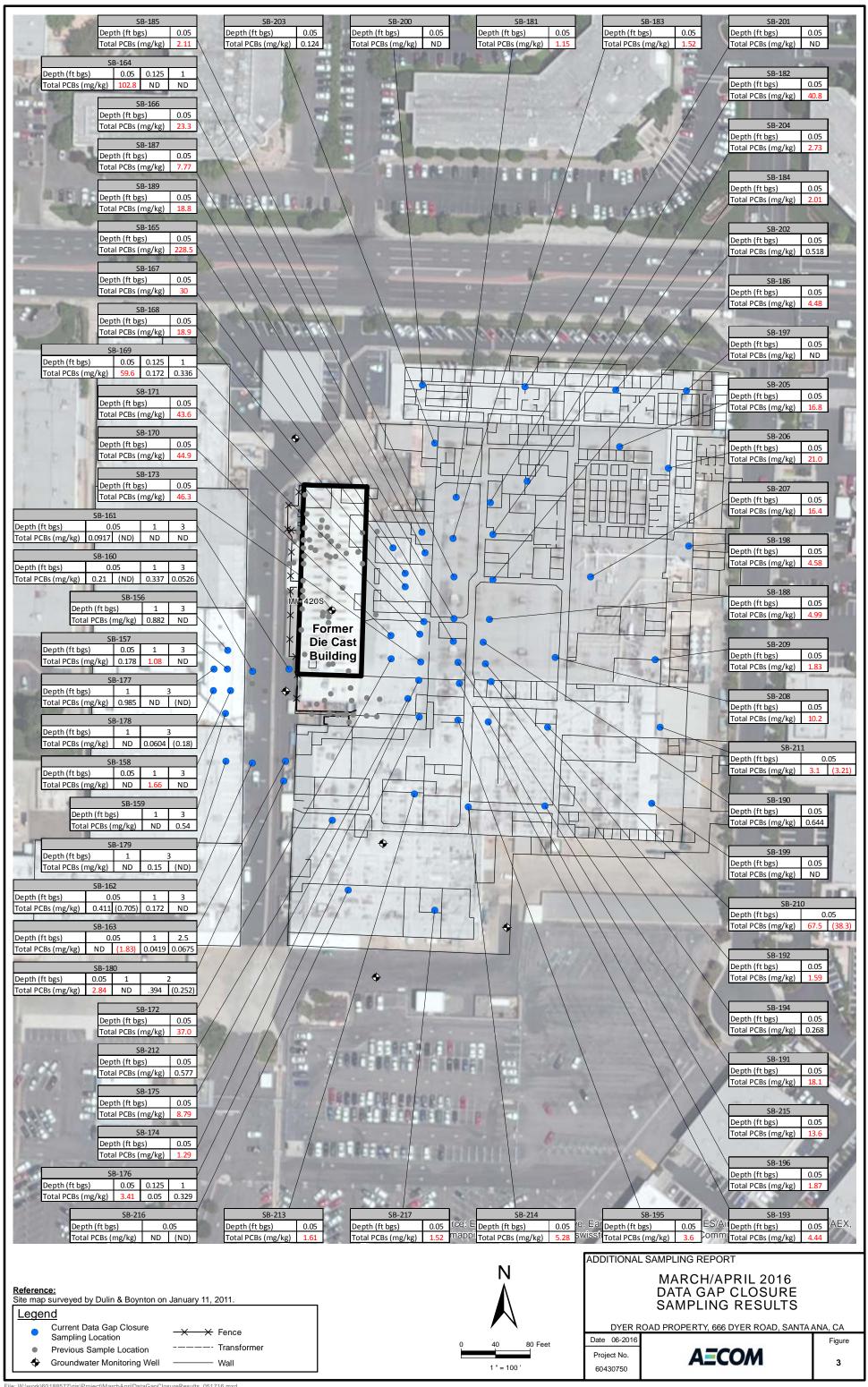
AECOM, 2014b. Supplemental Sampling Work Plan and Response to Comments from the Santa Ana Regional Water Quality Control Board on the 2014 Die Cast Area Supplemental Sampling Report, East

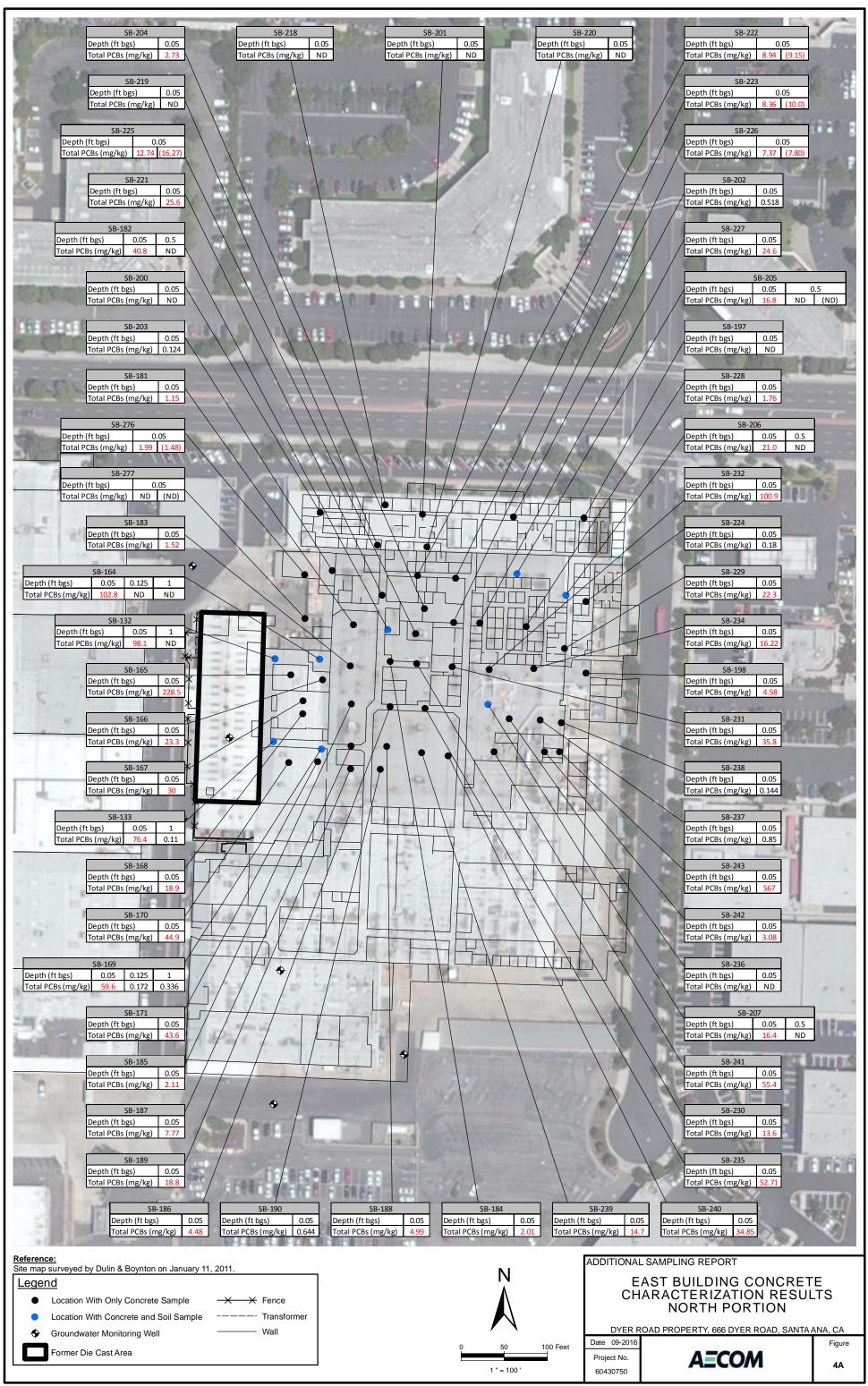
Building Former Die Cast Area, ITT Dyer Road Facility, 666 East Dyer Road, Santa Ana, California. July 14.

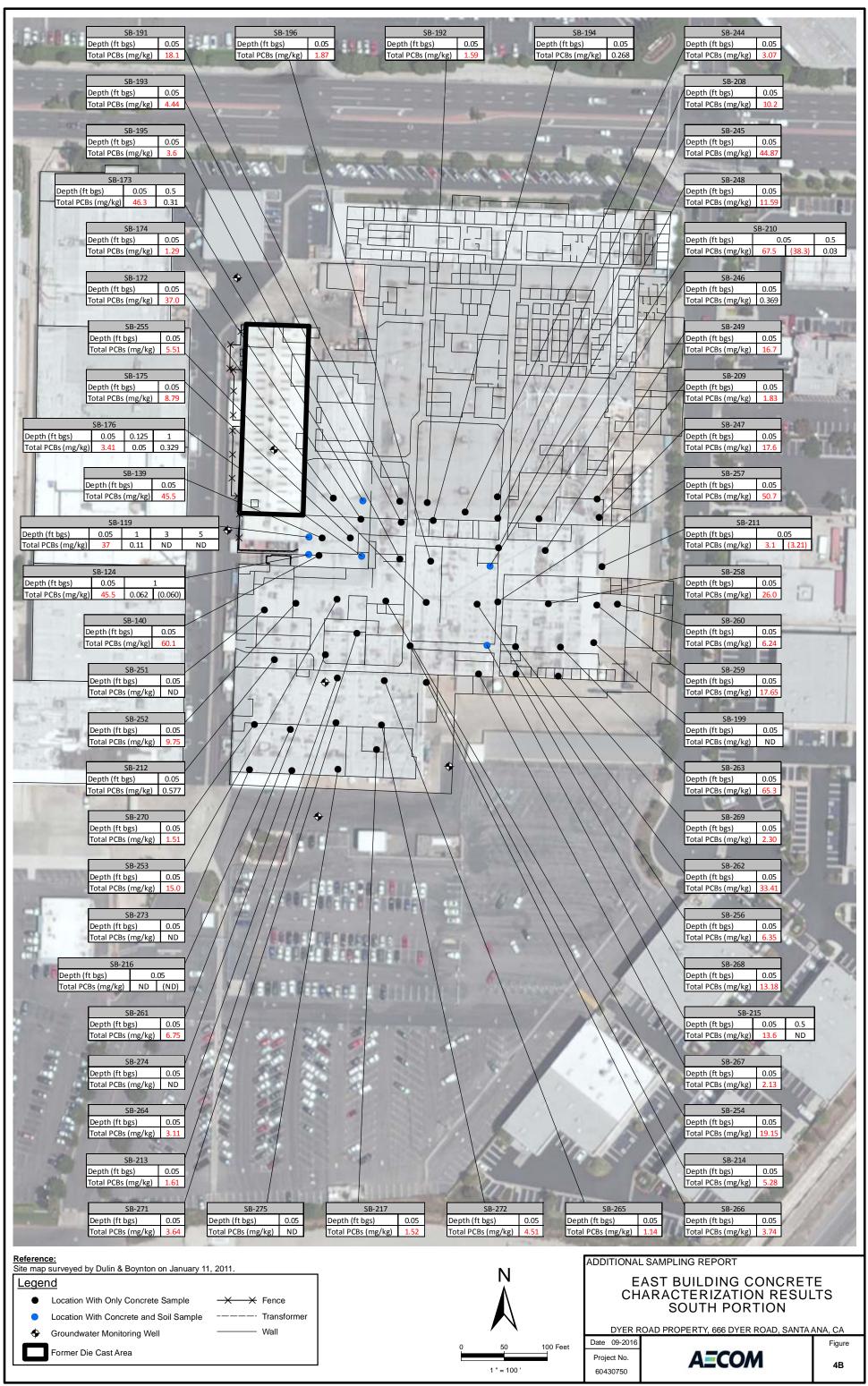
AECOM, 2016. Data Gap Closure Work Plan, Former Die Cast Area, ITT Dyer Road Facility, 666 East Dyer Road, Santa Ana, California. January 12.

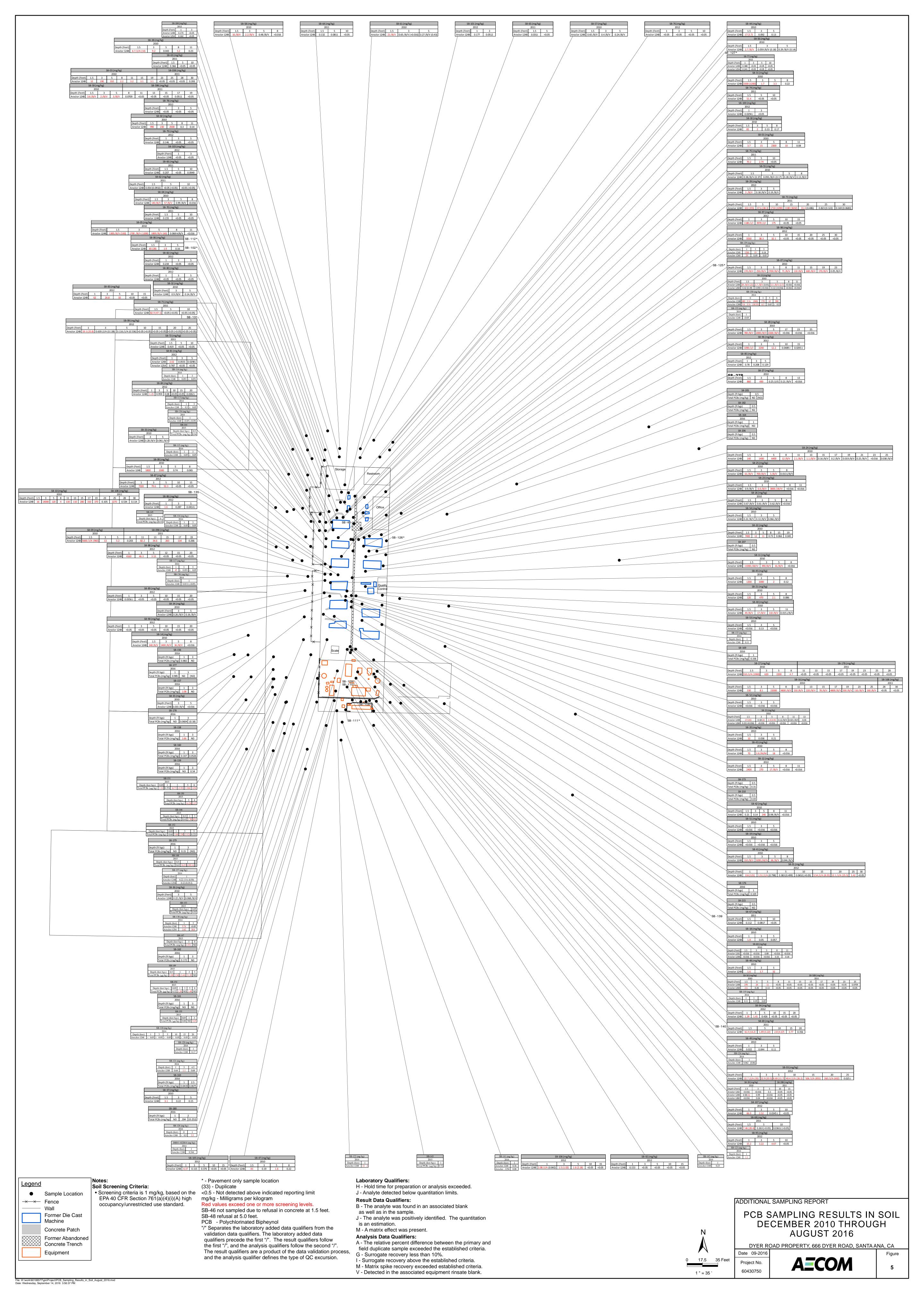

ITT, 2015. Email communication from Jeffrey Stanek to Nancy Olson-Martin, SARWQCB, providing June 2015 sampling results and proposed additional sampling locations in the Die Cast Area. September 15.


SARWQCB, 2015. Email communication from Nancy Olson-Martin to Jeffrey Stanek, ITT Corporation, providing concurrence with proposed additional sampling to be conducted in October 2015 in the Die Cast Area. September 23.


USEPA, 2011. Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (PCBs). USEPA Region 1. May.


USEPA, 2015. Email communication from Sara Ziff to Jeffrey Stanek, ITT Corporation, providing concurrence with proposed additional sampling to be conducted in October 2015 in the Die Cast Area. September 24.


cc: Mr George B. Randell, U.S. EPA Region IX Mr. Jeff Stanek, PG, CEG, CHG ITT Corporation Project File 60430750 **FIGURES**



TABLES

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
		October 2015	(· · · 8 ·)	1 (************************************	
SB-150	SB-146	Refine vertical distribution of PCBs along the western side of the die cast area, adjacent to SB-146	8	5, 8	
SB-151	SB-146	Refine lateral distribution of PCBs along the western side of the die cast area, west and north of SB-146	8	0.05, 1, 3, 5, 8	
SB-152	SB-146	Refine lateral distribution of PCBs along the western side of the die cast area, west and south of SB-146	8	0.05, 1, 3, 5	
SB-153	SB-149	Refine lateral distribution of PCBs along the western side of the die cast area, west of SB-149	0.05	0.05	Refusal at 0.5 ft bgs
SB-154	SB-149	Refine lateral distribution of PCBs along the western side of the die cast area, south of SB-149	8	0.05, 1, 3, 5, 8	
SB-155	SB-149	Refine lateral distribution of PCBs along the western side of the die cast area, east of SB-149	3	0.05, 1, 3	Refusal at 3 ft bgs
•		March-April 2016			
SB-156	SB-151	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-151	10	1, 3	
SB-157	SB-151	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-151	10	0.05, 1, 3	
SB-158	SB-150	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-150	10	0.05, 1, 3	
SB-159	SB-152	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-152	10	1, 3	
SB-160	SB-151	Refine lateral and vertical distribution of PCBs along the western side of the die cast area in asphalt area outside the West Building, adjacent to SB-151	10	0.05, 1, 3	

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
SB-161	SB-151	Refine lateral and vertical distribution of PCBs along the western side of the die cast area in asphalt area outside the West Building, adjacent to SB-151	10	0.5, 1, 3	
SB-162	SB-152	Refine lateral and vertical distribution of PCBs along the western side of the die cast area in asphalt area outside the West Building, adjacent to SB-152	10	0.5, 1, 3	
SB-163	SB-152	Refine lateral and vertical distribution of PCBs along the western side of the die cast area in asphalt area outside the West Building, adjacent to SB-152	2.5	0.5, 1, 2.5	Refusal at 2.5 ft bgs
SB-164	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	1	0.05, 0.125, 1	
SB-165	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-166	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-167	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-168	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-169	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	1	0.05, 0.125, 1	
SB-170	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-171	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
SB-172	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-173	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-174	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-175	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-176	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	1	0.05, 0.125, 1	
SB-177	SB-157	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-157	10	1, 3	
SB-178	SB-158	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-158	10	1, 3	
SB-179	SBS-162	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-162	10	1, 3	
SB-180	SB-163	Refine lateral and vertical distribution of PCBs along the western side of the die cast area within the West Building, adjacent to SB-163	2	0.05, 1, 2	Refusal at 2 ft bgs
SB-181	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-182	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
SB-183	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-184	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-185	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-186	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-187	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-188	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-189	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-190	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-191	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-192	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-193	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-194	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-195	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
SB-196	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-197	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-198	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-199	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-200	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-201	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-202	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-203	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-204	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-205	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-206	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-207	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-208	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	

New Location ID	Prior Sampling Location	Sample Rationale	Total Depth (ft bgs)	Analyzed Sample Depth (ft bgs)	Notes
SB-209	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-210	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-211	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-212	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-213	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-214	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-215	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-216	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	
SB-217	N/A	Refine lateral distribution of PCBs along the western portion of the East Building, Adjacent to the former Die Cast Building	0.05	0.05	

Notes:

ft bgs: Feet Below Ground Surface

NA = Not Applicable

PCB: Polychlorinated Biphenyl

Table 2 Summary of Analytical Results October 2015 Additional Sampling ITT Dyer Road Facility

Sample ID		SB-150-5	SB-150-8	SB-151-0.05	SB-151-1	SB-151-3	SB-151-3a	SB-151-5	SB-151-8	SB-152-0.05	SB-152-1	SB-152-3	SB-152-3a
Medium		Soil	Soil	Asphalt	Soil	Soil	Soil	Soil	Soil	Asphalt	Soil	Soil	Soil
Sample Depth (bgs)		5-feet	8-feet	Surface	1-foot	3-feet	3-feet	5-feet	8-feet	Surface	1-foot	3-feet	3-feet
Lab Sample ID	Screening	78821.03	78876.02	78682.05	78682.19	78682.20	78682.21	78821.04	78876.03	78682.04	78682.14	78682.12	78682.13
Date Collected	Criterion*	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15
olychlorinated Biphenyls by Method 8082 (mg/kg)													
Aroclor-1016		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1248		11.7	2.57	0.798	0.268	11.4	2.33	1.89	6.94	0.417	0.74	1.72	1.95
Aroclor-1254		2.58	< 0.050	0.338	0.106	5.33	0.601	0.376	< 0.05	0.223 J	0.296	0.582	1.17
Aroclor-1260		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05
Total PCBs	1	14.28	2.57	1.136	0.374	16.73	2.93	2.266	6.94	0.640	1.04	2.30	3.12

Notes:

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

Bold outline indicates the concentration exceeds the screening criterion.

A - Field duplicate RPD exceeded established criteria

J - The analyte was detected. The concentration is an estimated value.

^{* -} Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard

< - the sample was not detected above the reporting limit indicated.

⁻a - Indicates a field duplicate sample.

Table 2 Summary of Analytical Results October 2015 Additional Sampling ITT Dyer Road Facility

Sample ID		SB-152-5	SB-153-0.05	SB-154-0.05	SB-154-1	SB-154-3	SB-154-5	SB-154-8	SB-155-0.05	SB-155-1	SB-155-3
Medium		Soil	Asphalt	Asphalt	Soil	Soil	Soil	Soil	Asphalt	Soil	Soil
Sample Depth (bgs)		5-feet	Surface	Surface	1-foot	3-feet	5-feet	8-feet	Surface	1-foot	3-feet
Lab Sample ID	Screening	78821.02	78682.05	78682.02	78682.06	78682.07	78821.01	78876.01	78682.03	78682.11	78682.1
Date Collected	Criteria*	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15
Polychlorinated Bi	phenyls by N	Method 8082 (mg/	kg)								
Aroclor-1016		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1221		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1232		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1242		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1248		0.237	0.331	0.194 J	< 0.1	< 0.05	1.11	< 0.05	0.605	< 0.25	6.82
Aroclor-1254		0.084	0.193 J	0.130 J	1.26	< 0.05	0.367	< 0.05	0.273	< 0.25	2.43
Aroclor-1260		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1262		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Aroclor-1262		< 0.05	< 0.25	< 0.25	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.25	< 0.05
Total PCBs	1	0.321	0.52	0.32	1.26	ND	1.48	ND	0.878	ND	9.25

Notes:

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

Bold outline indicates the concentration exceeds the screening criterion.

J - The analyte was detected. The concentration is an estimated value.

M - a matrix effect was present

^{* -} Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard

< - the sample was not detected above the reporting limit indicated.

⁻a - Indicates a field duplicate sample.

Sample ID		SB-156-1	SB-156-3	SB-157-0.05	SB-157-1	SB-157-3	SB-158-0.05	SB-158-1	SB-158-3	SB-159-1	SB-159-3	SB-160-0.05	SB-160-0.05-a	SB-160-1	SB-160-3	SB-161-0.05
Medium		Soil	Soil	Concrete	Soil	Soil	Concrete	Soil	Soil	Soil	Soil	Asphalt	Asphalt	Soil	Soil	Asphalt
Sample Depth (bgs)		1-foot	3-feet	Surface	1-foot	3-feet	Surface	1-foot	3-feet	1-foot	3-foot	Surface	Surface	1-foot	3-feet	Surface
Lab Sample ID	Screening	80593.17	80593.19	80593.10	80593.11	80593.15	80593.03	80593.04	80593.05	80593.08	80593.09	80592.06	80592.07	80592.09	80592.10	80592.02
Date Collected	Criterion*	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16
Polychlorinated Biphenyls by Method 8082 (mg/kg)																
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1248		0.882	< 0.05	0.0987	1.08	< 0.05	< 0.05	1.66	< 0.05	< 0.05	0.276	0.21	< 0.5	0.337	0.0526	0.0917
Aroclor-1254		< 0.05	< 0.05	0.0793	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.179	0.05	< 0.5	< 0.050	< 0.05	< 0.5
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0811	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< <0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< <0.05	< 0.05	< 0.5	< 0.05	< 0.05	< 0.5
Total PCBs	1	0.882	ND	0.178	1.08	ND	ND	1.66	ND	ND	0.54	0.21	ND	0.337	0.0526	0.0917

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-161-0.05-a	Sb-161-1	SB-161-3	SB-162-0.05	SB-162-0.05-a	SB-162-1	SB-162-3	SB-163-0.05	SB-163-0.05-a	SB-163-1	SB-163-2.5	SB-164-0.05	SB-164-0.125	SB-164-1	SB-165-0.05	SB-166-0.05
Medium		Asphalt	Soil	Soil	Asphalt	Asphalt	Soil	Soil	Asphalt	Asphalt	Soil	Soil	Concrete	Concrete	Soil	Concrete	Concrete
Sample Depth (bgs)		Surface	1-foot	3-feet	Surface	Surface	1-foot	3-feet	Surface	Surface	1-feet	2.5-feet	Surface	1.5-Inches	1-Foot	Surface	Surface
Lab Sample ID	Screening	80592.03	80592.04	80592.05	80592.19	80592.20	80592.24	80592.26	80592.13	80592.14	80592.16	80592.18	80593.33	81378.09	81153.48	80593.31	80593.32
Date Collected	Criterion*	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/27/16	04/14/16	03/10/16	03/10/16
Polychlorinated Bip	henyls by M	Iethod 8082 (m	g/kg)														
Aroclor-1016		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.5	< 0.05	< 0.05	0.189 J	0.325	0.113	< 0.05	< 0.5	0.956	0.0419 J	0.0675 J	68	< 0.05	< 0.05	132	6.88
Aroclor-1254		< 0.5	< 0.05	< 0.05	0.222 J	0.380	0.059	< 0.05	< 0.5	0.876	0.05	0.1	34.8	< 0.05	< 0.05	96.5	10.7
Aroclor-1260		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.5	< 0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	5.68
Total PCBs	1	ND	ND	ND	0.411	0.705	0.172	ND	ND	1.83	0.0419	0.0675	103	ND	ND	229	23.3

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-167-0.05	SB-168-0.05	SB-169-0.05	SB-169-0.125	SB-169-1	SB-170-0.05	SB-171-0.05	SB-172-0.05	SB-173-0.05	SB-174-0.05	SB-175-0.05	SB-176-0.05	SB-176-0.125	SB-176-1	SB-177-1	SB-177-3	SB-177-3-a
Medium		Concrete	Concrete	Concrete	Concrete	Soil	Concrete	Soil	Soil	Soil	Soil	Soil						
Sample Depth (bgs)		Surface	Surface	Surface	1.5-Inches	1-Foot	Surface	1.5-Inches	1-Foot	1-Foot	3-Feet	3-Feet						
Lab Sample ID	Screening	80593.20	80593.18	80593.02	81378.08	81153.50	80593.06	80593.01	80592.25	80592.27	80592.17	80592.08	80592.01	81378.07	81153.52	81153.04	81153.06	81153.05
Date Collected	Criterion*	03/10/16	03/10/16	03/10/16	04/27/16	04/14/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/27/16	04/14/16	04/14/16	04/14/16	04/14/16
Polychlorinated Bipl	henyls by M	Iethod 8082 ((mg/kg)															
Aroclor-1016		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 / M/M	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		13.5	12.8 /J/G	23.8	0.0800	< 0.05	24.9	23.6	24.5	29.2	0.997	5.97	2.38	< 0.05	0.329	0.985	< 0.05	< 0.05
Aroclor-1254		16.5	6.14 /J/G	35.8	0.0923	0.336	20.0	20	12.5	17.1	0.291	2.82	1.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05 /R/G	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	30	18.9	59.6	0.172	0.336	44.9	43.6	37.0	46.3	1.29	8.79	3.41	0.050	0.329	0.985	ND	ND

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-178-1	SB-178-3	SB-178-3-a	SB-179-1	SB-179-3	SB-179-3-a	SB-180-0.05	SB-180-1	SB-180-2	SB-180-2-a	SB-181-0.05	SB-182-0.05	SB-183-0.05	SB-184-0.05	SB-185-0.05	SB-186-0.05	SB-187-0.05
Medium		Soil	Soil	Soil	Soil	Soil	Soil	Asphalt	Soil	Soil	Soil	Concrete						
Sample Depth (bgs)		1-Foot	3-Feet	3-Feet	1-Foot	3-Feet	3-Feet	Surface	1-Foot	2-Feet	2-Feet	Surface						
Lab Sample ID	Screening	81153.11	81153.13	81153.12	81153.17	81153.19	81153.18	81153.23	81153.24	81153.26	81153.25	81153.27	81153.30	81153.31	81153.32	81153.33	81153.34	81153.01
Date Collected	Criterion*	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16
Polychlorinated Bip	henyls by M	lethod 8082 (n	ng/kg)															
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248		< 0.05	0.0604 /J/A	0.180	< 0.05	0.150	< 0.05	2.84	< 0.05	0.394 /J/A	0.252	1.15	40.8	1.52	2.01	2.11	4.48	7.77
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PCBs	1	ND	0.0604	0.18	ND	0.150	ND	2.84	ND	0.394	0.252	1.15	40.8	1.52	2.01	2.11	4.48	7.77

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-188-0.05	SB-189-0.05	SB-190-0.05	SB-191-0.05	SB-192-0.05	SB-193-0.05	SB-194-0.05	SB-195-0.05	SB-196-0.05	SB-197-0.05	SB-198-0.05	SB-199-0.05	SB-200-0.05	SB-201-0.05	SB-202-0.05	SB-203-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Lab Sample ID	Screening	81153.37	81153.38	81153.39	81153.40	81153.41	81153.42	81153.45	81153.46	81153.47	81168.01	81168.02	81168.03	81378.01	81378.03	881378.05	81378.02
Date Collected	Criterion*	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/27/16	04/27/16	04/27/16	04/27/16
Polychlorinated Bip	henyls by M	lethod 8082 (n	ng/kg)														
Aroclor-1016		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1221		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1232		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1242		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1248		4.99	18.8	0.644	18.1	1.59	4.44	0.268	3.6	1.87	< 0.05	4.58	< 0.05	< 0.1	< 0.25	< 0.25	0.0662
Aroclor-1254		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	0.518	0.0578
Aroclor-1260		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1262		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Aroclor-1268		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.25	< 0.25	< 0.05
Total PCBs	1	4.99	18.8	0.644	18.1	1.59	4.44	0.268	3.6	1.87	ND	4.58	ND	ND	ND	0.518	0.124

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-204-0.05	SB-205-0.05	SB-206-0.05	SB-207-0.05	SB-208-0.05	SB-209-0.05	SB-210-0.05	SB-210-0.05-a	SB-211-0.05	SB-211-0.05-a	SB-212-0.05	SB-213-0.05	SB-214-0.05	SB-215-0.05	SB-216-0.05	SB-216-0.05-a	SB-217-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Lab Sample ID	Screening	81378.06	81378.04	81378.10	81378.13	81378.12	81378.11	81378.14	81378.15	81378.16	81378.17	81378.20	81378.21	81378.19	81378.18	81378.23	81378.24	81378.22
Date Collected	Criterion*	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16	04/27/16
Polychlorinated Bip	henyls by M	Iethod 8082 (m	ng/kg)															
Aroclor-1016		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1221		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1232		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1242		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1248		0.853	5.06	< 0.25	7.64	6.15	0.453	46.4 /J/A	25.6	1.86	1.94	< 0.05	0.862	3.7	9.19	< 0.25	< 0.25	1.52
Aroclor-1254		1.88	11.7	19.4	8.72	3.44	1.03	21.1 /J/A	12.7	1.19	1.27	0.205	0.617	1.58	4.38	< 0.25	< 0.25	< 0.1
Aroclor-1260		< 0.05	< 0.25	1.62	< 0.05	0.632	0.351	< 0.05	< 0.05	< 0.05	< 0.05	0.372	0.127	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1262		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Aroclor-1268		< 0.05	< 0.25	< 0.25	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.25	< 0.25	< 0.1
Total PCBs	1	2.73	16.8	21.0	16.4	10.2	1.83	67.5	38.3	3.05	3.21	0.577	1.61	5.28	13.6	ND	ND	1.52

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- A Field duplicate RPD exceeded established criteria
- G Surrogate recovery less than 10%.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.

Sample ID		SB-218-0.05	SB-219-0.05	SB-220-0.05	SB-221-0.05	SB-222-0.05	SB-222-0.05a	SB-223-0.05	SB-223-0.05a	SB-224-0.05	SB-225-0.05	SB-225-0.05a	SB-226-0.05	SB-226-0.05a	SB-227-0.05	SB-228-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Lab Sample ID	Screening	83817.21	83817.20	83817.22	83803.07	83803.05	83803.06	83803.08	83803.09	83828.13	83803.10	83803.11	83803.13	83803.12	83828.06	83803.33
Date Collected	Criterion*	08/04/16	08/04/16	08/04/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16
Polychlorinated Bip	henyls by M	Iethod 8082 (m	g/kg)													
Aroclor-1016		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1221		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1232		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1242		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1248		< 0.125	< 0.25	< 0.025	14.9	5.97	6.08	5.82	6.65	< 0.025	6.11	7.86 /J/I	4.56	4.95	< 0.125	< 0.025
Aroclor-1254		< 0.13	< 0.25	< 0.025	10.7	2.97	3.07	2.54	3.35	0.180	6.63	8.41 /J/I	2.81	2.85	24.6	1.76
Aroclor-1260		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1262		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< <0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Aroclor-1268		< 0.13	< 0.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< <0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025
Total PCBs	1	ND	ND	ND	25.6	8.94	9.15	8.36	10.00	0.180	12.74	16.27	7.37	7.80	24.6	1.76

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.

Sample ID		SB-229-0.05	SB-230-0.05	SB-231-0.05	SB-232-0.05	SB-234-0.05	SB-235-0.05	SB-236-0.05	SB-237-0.05	SB-238-0.05	SB-239-0.05	SB-240-0.05	SB-241-0.05	SB-242-0.05	SB-243-0.05	SB-244-0.05	SB-245-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Lab Sample ID	Screening	83803.34	83828.04	83803.31	83803.15	83803.32	83803.14	83803.36	83803.38	83828.14	83803.35	83803.37	83803.40	83803.35	83828.15	83803.41	83817.01
Date Collected	Criterion*	08/03/16	08/05/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16	08/03/16	08/03/16	08/03/16	08/05/16	08/03/16	08/04/16
Polychlorinated Bipl	henyls by M	lethod 8082 (m	g/kg)														
Aroclor-1016		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1221		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1232		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1242		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1248		< 0.125	< 0.025	23.9	44.3	8.86	43.8	< 0.025	< 0.025	< 0.025	2.84	26.1	< 0.025	< 0.025	< 0.125	2.23	37.6 /J/I
Aroclor-1254		22.3	13.6	11.9	56.6	7.36	8.91	< 0.025	0.85	0.144	11.9	8.75	55.4	3.08	567	0.84	7.27 /J/I
Aroclor-1260		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1262		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Aroclor-1268		< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.03	< 0.25
Total PCBs	1	22.3	13.6	35.8	100.9	16.22	52.71	ND	0.85	0.144	14.7	34.85	55.4	3.08	567	3.07	44.87

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.

Sample ID		SB-246-0.05	SB-247-0.05	SB-248-0.05	SB-249-0.05	SB-251-0.05	SB-252-0.05	SB-253-0.05	SB-254-0.05	SB-255-0.05	SB-256-0.05	SB-257-0.05	SB-258-0.05	SB-259-0.05	SB-260-0.05	SB-261-0.05	SB-262-0.05	SB-263-0.05	SB-264-0.05
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Lab Sample ID	Screening	83817.02	83817.03	83817.11	83817.10	83817.18	83817.17	83817.15	83817.14	83817.13	83817.12	83817.07	83817.06	83817.05	83817.04	83817.19	83817.08	83817.09	83828.05
Date Collected	Criterion*	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/05/16
Polychlorinated Bipl	henyls by M	1ethod 8082 (r	ng/kg)																
Aroclor-1016		< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03 /M/M	< 0.025	< 0.03	< 0.13
Aroclor-1221		< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13
Aroclor-1232		< 1.13	< 1.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13
Aroclor-1242		< 1.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13
Aroclor-1248		< 1.125	< 0.125	6.35	< 0.025	< 0.025	< 0.05	< 0.125	12.8	4.34	4.03	< 0.025	< 0.03	10.7	4.35	4.73	24.5	50.9	2.16
Aroclor-1254		0.369	17.6	5.24	16.7	< 0.025	9.75	15.0	6.35	1.17	2.32	50.7	26.0	6.95	1.89	2.02	8.91	14.4	0.95
Aroclor-1260		< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03 /M/M	< 0.025	< 0.03	< 0.13
Aroclor-1262		< 0.13	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13
Aroclor-1268		< 0.125	< 0.13	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.25	< 0.03	< 0.025	< 0.025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.025	< 0.03	< 0.13
Total PCBs	1	0.369	17.6	11.59	16.7	ND	9.75	15.0	19.15	5.51	6.35	50.7	26.0	17.65	6.24	6.75	33.41	65.3	3.11

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.

Table 4 Summary of Analytical Results August 2016 Data Gap Closure Sampling ITT Dyer Road Facility

Sample ID		SB-265-0.05	SB-266-0.05	SB-2670.05	SB-268-0.05	SB-269-0.05	SB-270-0.05	SB-271-0.05	SB-272-0.05	SB-273-0.05	SB-274-0.05	SB-275-0.05	SB-276-0.05	SB-276-0.05a	SB-277-0.05	SB-277-0.05a	SB-173-0.5	SB-182-0.5
Medium		Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Soil	Soil
Sample Depth (bgs)		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	0.5 Feet	0.5 Feet
Lab Sample ID	Screening	83817.23	83817.24	83828.03	83838.02	83838.01	83838.12	83838.07	83817.25	83838.11	\$83,838.10	83838.08	83803.01	83803.02	83803.03	83803.04	83803.27	83803.16
Date Collected	Criterion*	08/04/16	08/04/16	08/05/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/04/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Bip	henyls by M	Iethod 8082 (n	ng/kg)															
Aroclor-1016		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		0.837	2.20	1.640	8.19 /J/I	< 0.125	0.924	2.44	3.06	< 0.125	< 0.025	< 0.025	0.848	0.668	< 0.025	< 0.025	0.212	< 0.025
Aroclor-1254		0.298	1.54	0.492	3.99 /J/I	2.30	0.581	1.20	1.45	< 0.125	< 0.025	< 0.025	1.140	0.815	< 0.025	< 0.025	0.099	< 0.025
Aroclor-1260		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.125	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	1.14	3.74	2.13	12.18	2.30	1.51	3.64	4.51	ND	ND	ND	1.99	1.48	ND	ND	0.311	ND

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

Bold outline indicates the concentration exceeds the screening criterion.

- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.

Table 4
Summary of Analytical Results
August 2016 Data Gap Closure Sampling
ITT Dyer Road Facility

Sample ID		SB-205-0.5	SB-205-0.5a	SB-206-0.5	SB-207-0.5	SB-210-0.5	SB-215-0.5
Medium		Soil	Soil	Soil	Soil	Soil	Soil
Sample Depth (bgs)		0.5 Feet	0.5 Feet	0.5 Feet	0.5 Feet	0.5 Feet	0.5 Feet
Lab Sample ID	Screening	83803.18	83803.19	83803.21	83803.25	83803.23	83803.29
Date Collected	Criterion*	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Bip	henyls by M	Iethod 8082 (n	ng/kg)				
Aroclor-1016		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248		< 0.025	< 0.025	< 0.025	< 0.025	0.031 J	< 0.025
Aroclor-1254		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1260		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1268		< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Total PCBs	1	ND	ND	ND	ND	0.031	ND

Notes:

- * Screening criterion is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4)(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

bgs = below ground surface

mg/kg - milligrams per kilogram

ND - Not Detected

Bold font and shading indicates the analyte was detected.

Bold outline indicates the concentration exceeds the screening criterion.

- I Surrogate recovery above the upper limit.
- J The analyte was detected. The concentration is an estimated value.
- M A matrix effect was present.

		SB-1-1.5	SB-1-3	SB-1-5	SB-1-8	SB-1-11	SB-2-1.5	SB-2-3	SB-2-5	SB-2-8	SB-2-11	SB-3-1.5	SB-3-3	SB-3-5	SB-3-8	SB-3-11	SB-3-15	SB-3-19	SB-4-1.5	SB-4-3	SB-4-5	SB-4-8	SB-5-1.5	SB-5-1.5-a	SB-5-3	SB-5-3-a	SB-5-5
Lab Sample ID	Screening	115496-007	115496-008	115496-009	115498-007	115498-008	115496-004	115496-005	115496-006	115498-001	115498-002	115509-053	115509-054	115509-055	115499-002	115499-003	115499-005	115499-007	115509-011	115509-012	115509-013	N005136-044	N005142-017	N005142-022	N005142-020	N005142-025	N005142-021
Date Collected	Criteria*	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/27/10	12/27/10	12/27/10	12/28/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 8082	2 (mg/kg)																										
Aroclor-1016	1	< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor-1221	1	< 0.033	< 0.16	< 0.033 /R/G	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.33	< 0.33	< 0.033	< 3.3	< 3.3	< 3.3	< 0.033	< 0.033	< 0.033	< 0.033	< 33	< 33	< 33	< 33	< 33
Aroclor-1232	1	< 0.016	< 0.082	< 0.016 / R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor-1242	1	< 0.016	< 0.082	< 0.016 / R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor-1248	1	3.7	15	2300	10	0.08	990	230	2500	0.3	0.14	12	190	310	2.2	3.2	3.1	3.1	140 /B/V	57 /B/V	0.99 /B/V	< 0.016	1300 /B/V	530	1700 /B/V	1200	1800 /B/V
Aroclor-1254	1	< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor-1260	1	< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor-1262	1	< 0.016	< 0.082	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16
Aroclor 1268	1	< 0.016	< 0.082	< 0.016 / R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.016	< 1.6	< 1.6	< 1.6	< 0.016	< 0.016	< 0.016	< 0.016	< 16	< 16	< 16	< 17	< 16

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-5-5-a	SB-5-8	SB-5-11	SB-6-1.5	SB-6-1.5-a	SB-6-3	SB-6-5	SB-7-1.5	SB-7-3	SB-7-5	SB-7-8	SB-7-11	SB-7-15	SB-7-19	SB-7-23	SB-8-1.5	SB-8-3	SB-8-5	SB-8-8	SB-9-1.5	SB-9-1.5a	SB-9-3
Lab Sample ID	Screening	N005142-026	115561-118	115561-119	N005136-026	N005136-030		N005136-029		115509-021	115509-022	115561-152	115561-153	115561-155	115561-157	115561-159	115496-001	115496-002	115496-003	115500-007	115443-001	115443-004	115443-002
Date Collected	Criteria*	12/29/10	12/29/10	12/29/10	12/28/10	12/28/10	12/28/10	12/28/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/23/10	12/23/10	12/23/10	12/23/10	12/22/10	12/22/10	12/22/10
Polychlorinated Biphenyls by Method 808	32 (mg/kg)							•															•
Aroclor-1016	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16 /M/M	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033 H//	< 0.033 H//	< 0.033	< 0.033	< 0.033	< 0.033	< 0.33	< 0.33	< 0.33	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	60	0.068 H/B/V	< 0.016 H//	65	28	1.9	0.16	170 /B/V	250 /B/V	2700 /B/V	71 /B/V	110 /B/V	600 /B/V	170 /B/V	0.05 /B/V	5800	2300	0.74	0.065	5600 /J/A	960	13
Aroclor-1254	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16 /M/M	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016 H//	< 0.016 H//	< 0.016	< 0.016	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

			1	1		1	1	I		1			1		1						1			
		SB-9-5	SB-10-1.5	SB-10-3	SB-10-5	SB-10-8	SB-10-11	SB-10-13	SB-10-15	SB-10-17	SB-10-19	SB-11-1.5	SB-11-3	SB-11-5	SB-11-8	SB-12-1.5	SB-12-3	SB-12-5	SB-12-8	SB-12-11	SB-13-1.5	SB-13-1.5-a	SB-13-3	SB-13-3-a
Lab Sample ID	Screening	115443-003	115446-009	115446-010	115446-011	115445-013	115445-014	115445-015	115445-016	115445-017	115445-018	115509-035	115509-036	115509-037	115561-059	N005136-055	N005136-056	115541-151	N005136-046	115541-129	N005142-007	N005142-012	N005142-010	N005142-015
Date Collected	Criteria*	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/27/10	12/27/10	12/27/10	12/29/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/29/10	12/29/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																							
Aroclor-1016	1	< 0.016 /M/M	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.16	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 3.3	< 3.3	< 0.66	< 0.66	< 0.66	< 0.033	< 33	< 33	< 0.33	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016
Aroclor-1248	1	5.2	16	14000	120	4	130	110	280	310	370	11000 /JB/IV	390 /B/V	16 /B/V	< 0.016	2400	270	17 /B/V	< 0.016	< 0.016	29 /B/V	21	2.7 /B/V	0.91
Aroclor-1254	1	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016
Aroclor-1260	1	< 0.016 /M/M	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	0.42	0.49	0.093	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.082	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 1.6	< 1.6	< 0.33	< 0.33	< 0.33	< 0.016	< 16	< 16	< 0.16	< 0.016	< 0.016	< 0.017	< 0.016	< 0.017	< 0.016

Notes:

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-13-5	SB-13-5-a	SB-13-8	SB-13-11	SB-14-1.5	SB-14-3	SB-14-5	SB-14-8	SB-15-1.5	SB-15-1.5-a	SB-15-3	SB-15-3-a	SB-15-5	SB-15-5-a	SB-15-8	SB-15-11	SB-15-13	SB-16-1.5	SB-16-3	SB-16-5	SB-16-8	SB-16-11	SB-16-13
Lab Sample ID	Screening	N005142-011	N005142-016	115561-102	115561-103	115509-032	115509-033	115509-034	115541-056	N005136-014	N005136-020	N005136-016	N005136-022	N005136-018	N005136-024	N005136-050	115541-146	N005136-054	115496-010	115496-011	115496-012	115573-039	115573-040	115573-041
Date Collected	Criteria*	12/29/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/23/10	12/23/10	12/23/10	12/30/10	12/30/10	12/30/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																			•				
Aroclor-1016	1	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033 H//	< 0.033 H//	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033 /R/G	< 3.3	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.016 H//	$<\ 0.016\ H/\!/$	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor-1248	1	5.5 /B/V	3.7	< 0.016 H//	< 0.016 H//	340 /B/V	1400 /B/V	36 /B/V	< 0.016	17	33	0.18	3	2.4	3.9	0.12	0.021 /B/V	0.03	130	8.1	22000	4800 /B/V	150 /B/V	220 /B/V
Aroclor-1254	1	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor-1260	1	0.12	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	0.22	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.016 H//	< 0.016 H//	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/G	< 1.6	< 0.016	< 0.016

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

				ı			1	1		1	1				1	1	1				1	1		
		SB-16-15	SB-16-17	SB-16-19	SB-16-23	SB-16-25	SB-17-1.5	SB-17-1.5a	SB-17-3	SB-17-5	SB-17-8	SB-18-1	SB-18-3	SB-18-5	SB-19-1.5	SB-19-3	SB-19-5	SB-20-1.5	SB-20-3	SB-20-5	SB-21-1.5	SB-21-3	SB-21-5	SB-21-8
Lab Sample ID	Screening	115573-042	115573-043	115573-044	115573-045	115573-046	115497-004	115497-007	115497-005	115497-006	115499-009	115432-012	115432-013	115432-014	115428-007	115428-008	115428-009	115431-007	115431-008	115431-009	115497-001	115497-002	115497-003	115501-007
Date Collected	Criteria*	12/30/10	12/30/10	12/30/10	12/30/10	12/30/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/23/10	12/23/10	12/23/10	12/23/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																							
Aroclor-1016	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33 /M/M	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	78 /B/V	4800 /B/V	330 /B/V	110 /B/V	160 /B/V	310 /J/A	1900	620	2200	4.7	1.8	0.05	0.057	< 0.016	< 0.016	< 0.016	10	0.038	0.21	120	470	2.1	0.086
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33 /M/M	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-22-1.5	SB-22-3	SB-22-5	SB-22-8	SB-22-15	SB-22-19	SB-23-1.5	SB-23-3	SB-23-5	SB-23-8	SB-23-11	SB-24-1.5	SB-24-3	SB-24-5	SB-24-8'	SB-24-11	SB-24-13	SB-24-15	SB-24-17	SB-24-19	SB-24-21	SB-24-23	SB-24-25
Lab Sample ID	Screening	115509-056	115509-057	115509-058	115501-001	115501-004	115501-006	115509-029	115509-030	115509-031	115561-094	115561-095	115497-008	115497-009	115497-010	115541-028	115541-029	115541-030	115541-031	115541-032	115541-033	115541-034	115541-035	115541-036
Date Collected	Criteria*	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/23/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/23/10	12/23/10	12/23/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10
Polychlorinated Biphenyls by Method 80	82 (mg/kg)				•			•									_			•				•
Aroclor-1016	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.33	< 0.033	< 0.033	< 0.33	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033 /J/i	< 0.033 /R/G	< 0.033 /R/G	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	<~0.016~/R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	7400	12	11	0.73	0.066	0.045	0.9 /B/V	6.6 /B/V	3800 /JB/IV	7 < 0.016	< 0.016	140	1400	6400	12 /B/V	2.1 /B/V	1.1 /B/V	0.16 /B/V	0.2 /B/V	0.019 /B/V	0.25 /B/V	< 0.016	0.038 /B/V
Aroclor-1254	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016 /J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.16	< 0.016	< 0.016	< 0.16	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	<~0.016~/J/i	< 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		l	1			1			1	l	1				ı	1	I		T .		1		
		SB-25-1.5	SB-25-3	SB-25-5	SB-25-8	SB-26-1.5	SB-26-3	SB-26-5	SB-26-8	SB-27-1.5	SB-27-3	SB-27-5	SB-27-8	SB-27-13	SB-28-1.5	SB-28-3	SB-28-5	SB-28-17	SB-28-23	SB-28-25	SB-29-1.5	SB-29-3	SB-29-5
Lab Sample ID	Screening	115509-001	115509-002	115509-003	115561-144	115509-004	115509-005	115509-006	115561-072	115497-011	115497-012	115497-013	115561-051	115561-052	115509-017	115509-018	115509-019	115561-021	115561-019	115561-020	115509-014	115509-015	115509-016
Date Collected	Criteria*	12/27/10	12/27/10	12/27/10	12/29/10	12/27/10	12/27/10	12/27/10	12/29/10	12/23/10	12/23/10	12/23/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10
Polychlorinated Biphenyls by Method 8082	2 (mg/kg)																						
Aroclor-1016	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/C	G < 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16 /M/M	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033 /R/O	G < 0.033 / R/G	< 0.033 /R/G	< 0.033	< 0.033	< 0.33	< 0.33	< 0.33	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 / R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	61 /B/V	700 /B/V	5 /B/V	0.013 J/B/V	0.67 /B/V	0.61 /B/V	0.62 /B/	V < 0.016	860	490	0.25 /J/G	0.21 /B/V	< 0.016	780 /B/V	2000 /B/V	6500 /B/V	< 0.016	< 0.016	< 0.016	3 /B/V	0.18 /B/V	0.19 /B/V
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 / R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 / R/G	< 0.016 /R/G	< 0.016	< 0.016	<~0.16~/M/M	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 /R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016 /R/0	G < 0.016 / R/G	< 0.016 /R/G	< 0.016	< 0.016	< 0.16	< 0.16	< 0.16	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

Bold font and shading indicates the concentration exceeds

ND - Not Detected

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-30-1.5	SB-30-3	SB-30-5	SB-30-8	SB-31-1.5	SB-31-1.5a	SB-31-3	SB-31-5	SB-31-8	SB-32-3	SB-32-5	SB-33-3	SB-33-5	SB-34-3	SB-34-5	SB-35-3	SB-35-5	SB-36-3	SB-36-5	SB-37-1.5	SB-37-3	SB-37-5	SB-38-1.5
Lab Sample ID	Screening	115446-001	115446-002	115446-003	115445-001	115443-014	115443-017	115443-015	115443-016	115447-007	115509-049	115509-050	115509-051	115509-052	N005136-001	N005136-003	N005136-007	N005136-008	N005136-004	N005136-005	N005136-040	N005136-042	N005136-043	115443-005
Date Collected	Criteria*	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/28/10	12/28/10	12/28/10	12/22/10
Polychlorinated Biphenyls by Method 8082	2 (mg/kg)				•																			
Aroclor-1016	1	< 0.016 /M/MD	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	85	2	0.33	0.17	1500	1200	1.7	3.3	0.22	0.9 /B/V	0.14 /B/V	0.28 /B/V	0.061 /B/V	0.26 /B/V	0.16 /B/V	0.033 /B/V	< 0.016	0.22 /B/V	0.068 /B/V	3.1	0.22	0.15	6.7 /J/A
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016 /M/MD	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.017	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

				1					1	1	1		1						1				
		SB-38-1.5a	SB-38-3	SB-38-5	SB-38-8	SB-38-11	SB-39-1.5	SB-39-1.5a	SB-39-3	SB-39-5	SB-40-1.5	SB-40-3	SB-40-5	SB-40-11	SB-41-1.5	SB-41-3	SB-41-5	SB-41-8	SB-42-1.5	SB-42-3	SB-42-5	SB-42-8	SB-42-11
Lab Sample ID	Screening	115443-008	115443-006	115443-007	115444-009	115444-010	N005136-032	115541-165	N005136-038	N005136-039	115509-026	115509-027	115509-028	115573-022	115509-023	115509-024	115509-025	115573-013	115431-004	115431-005	115431-006	115561-110	115561-111
Date Collected	Criteria*	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/28/10	12/28/10	12/28/10	12/28/10	12/27/10	12/27/10	12/27/10	12/30/10	12/27/10	12/27/10	12/27/10	12/30/10	12/21/10	12/21/10	12/21/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																						
Aroclor-1016	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.3	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	14	9.2	0.043	5.2 /B/V	0.23	0.58	1	0.99	< 0.016	49 /B/V	17 /B/V	110 /B/V	0.015 J/B/V	310 /B/V	5200 /JB/IV	66 /B/V	0.044 /B/V	0.21	0.14	240	0.98 /B/V	< 0.016
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.04	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

	1			1					1	1					1			1	1		
		SB-43-1.5	SB-43-3	SB-43-5	SB-43-8	SB-44-1.5	SB-44-1.5a	SB-44-3	SB-44-5	SB-45-1.5	SB-45-3	SB-45-5	SB-45-8	SB-47-1.5	SB-47-3	SB-47-5	SB-47-8	SB-48-1.5	SB-48-3	SB-48-5	SB-49-1
Lab Sample ID	Screening	115431-001	115431-002	115431-003	115561-130	115443-010	115443-013	115443-011	115443-012	115446-006	115446-007	115446-008	115445-007	115432-009	115432-010	115432-011	115428-011	115428-021	115428-022	115428-023	115432-001
Date Collected	Criteria*	12/21/10	12/21/10	12/21/10	12/29/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/22/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10
Polychlorinated Biphenyls by Method 808	32 (mg/kg)																				
Aroclor-1016	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	< 0.016 /J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033 /M/M	< 0.033	< 0.033	<~0.033~/J/i	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	$<~0.016~/\mathrm{J/i}$	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1248	1	70	3.8 /M/M	18	< 0.016	17	3.7	0.092	0.13	1200	1000	2	0.12	43	0.19	1.6	0.22	1.6	1.7	32	0.022
Aroclor-1254	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	< 0.016 /J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.016	< 0.016 /M/M	< 0.016	< 0.016	<~0.016~/J/i	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

Bold font and shading indicates the concentration exceeds

ND - Not Detected

the screening criterion
A - Field duplicate RPD exceeded established criteria

	T		1		1		1		1		1	1	1		1	1	1	1	1		
		SB-49-3	SB-49-5	SB-50-1.5	SB-50-3	SB-50-5	SB-51-1.5	SB-51-3	SB-51-5	SB-52-1.5	SB-52-3	SB-52-5	SB-53-1.5	SB-53-3	SB-53-5	SB-54-1.5	SB-54-3	SB-54-5	SB-55-1.5	SB-55-1.5-a	SB-55-3
Lab Sample ID	Screening	115432-002	115432-003	N005136-009	N005136-010	N005136-012	115428-001	115428-002	115428-003	115428-004	115428-005	115428-006	115431-016	115431-017	115431-018	115509-007	115509-008	115509-009	N005142-027	N005142-032	N005142-030
Date Collected	Criteria*	12/21/10	12/21/10	12/28/10	12/28/10	12/28/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/21/10	12/27/10	12/27/10	12/27/10	12/29/10	12/29/10	12/29/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																				
Aroclor-1016	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor-1248	1	0.044	0.11	270	24	11	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.13	< 0.016	0.22 /B/V	0.13 /B/V	0.066 /B/V	0.38 /B/V	0.37	0.093 /B/V
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor-1260	1	< 0.016	< 0.016	2.6	0.26	0.13	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-55-3-a	SB-55-5	SB-55-8	SB-56-1.5	SB-56-3	SB-56-3-a	SB-56-5	SB-56-5-a	SB-57-1.5	SB-57-3	SB-57-5	SB-58-1.5	SB-58-3	SB-58-5	SB-58-8	SB-59-1.5	SB-59-3	SB-59-5	SB-60-1.5	SB-60-3	SB-60-5	SB-60-5-a
Lab Sample ID	Screening	N005142-035	N005142-031	115573-030	115509-048	N005142-003	N005142-005	N005142-004	N005142-006	115509-045	5 115509-046	115509-047	115509-042	115509-043	115509-044	115541-112	115509-039	115509-040	115509-041	115428-017	115428-018	115428-019	115428-020
Date Collected	Criteria*	12/29/10	12/29/10	12/30/10	12/27/10	12/29/10	12/29/10	12/29/10	12/29/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/27/10	12/28/10	12/27/10	12/27/10	12/27/10	12/21/10	12/21/10	12/21/10	12/21/10
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																						
Aroclor-1016	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016 /M/M	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.66	< 0.033	< 0.033	< 0.033	< 0.66	< 0.66	< 0.66	< 0.033	< 0.033	< 0.033	< 0.033
Aroclor-1232	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1242	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	0.89
Aroclor-1248	1	0.17	0.28 /B/V	0.13 /B/V	2.7 /B/V	0.059 /B/V	0.18	0.29 /B/V	0.14	0.65 /B	/V 0.4 /B/V	0.24 /B/V	16 /B/V	2.2 /B/V	0.48 /B/V	< 0.016	3.6 /B/V	2 /B/V	3 /B/V	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1254	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1260	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor-1262	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016
Aroclor 1268	1	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.017	< 0.016	< 0.016	< 0.016	< 0.016	< 0.33	< 0.016	< 0.016	< 0.016	< 0.33	< 0.33	< 0.33	< 0.016	< 0.016	< 0.016	< 0.016

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SD 60 9	SB-60-11	SB-61-1.5	SB-61-3	SB-61-3-a	SB-61-5	SB-61-5-a	SB10B-23	SB10B-25	SB10B-28	SB10B-30	SB16B-28	SB16B-28-a	SB16B-30	SB16B-30-a	SB17B-11	SB17B-13	SB17B-15	SB17B-17	SB17B-19	SB17B-23	SB17B-25	SB17B-28	SB39B-10
Lab Sample ID	Concentra	SB-60-8 115428-010	115431-013	N005142-036	N005142-039	N005142-047		N005142-048	64279.08	64279.09	64279.1	64279.24	64262.13	64262.14	64266.22	64266.23	64255.01	64255.02	64255.03	64255.04	64255.05	64255.06	64255.07	64255.08	64253.11
-	Screening								12/29/11	12/29/11	12/29/11	12/29/11	12/28/11	12/28/11	12/28/11	12/28/11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11		27-Dec-11		l	
Date Collected	Criteria*	12/21/10	12/21/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/10	12/29/11	12/29/11	12/29/11	12/29/11	12/28/11	12/28/11	12/28/11	12/28/11	27-Dec-11								
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																								
Aroclor-1016	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	0.33	0.18	21 /B/V	0.65 /B/V	< 0.016	0.27 /B/V	0.43	0.105	2270	0.534	0.114	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1254	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.05	< 50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB39B-15	SB3B-23	SB3B-25	SB3B-28	SB3B-30	SB50B-08	SB50B-11	SB50B-13	SB50B-15	SB50B-17	SB50B-19	SB50B-23	SB50B-25	SB59B-08	SB59B-11	SB59B-13	SB59B-15	SB59B-17	SB59B-19	SB62-01.5	SB62-01.5-a	SB62-05	SB62-05-a	SB62-10
Lab Sample ID	Screening	64253.12	64265.07	64265.08	64265.09	64265.1	64253.01	64253.02	64253.03	64253.04	64253.05	64253.06	64253.07	64253.08	64266.21	64262.15	64262.16	64262.17	64262.18	64262.19	64262.2	64262.21	64262.22	64262.23	64262.24
Date Collected	Criteria*	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11														
Polychlorinated Biphenyls by Method 808	2 (mg/kg)	I			1	I.				1		1						1	I.	1		I.			الـــــــــــــــــــــــــــــــــــــ
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	< 0.05	< 0.05	< 0.05	< 0.05	0.393	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0709	< 0.05	< 0.05	< 0.05	0.0511	< 0.05	0.054 /J/A	0.0932	< 0.05	< 0.05	< 0.05
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB62-10-a	SB63-01.5	SB63-05	SB63-10	SB64-01.5	SB64-05	SB64-10	SB65-01.5	SB65-05	SB66-01.5	SB66-05	SB66-10	SB67-01.5	SB67-05	SB67-10	SB68-01.5	SB68-01.5-a	SB68-05	SB68-05-a	SB68-10	SB68-10-a	SB69-01.5	SB69-01.5-a
Lab Sample ID	Screening	64262.25	64256.3	64262.34	64262.35	64262.36	64263.01	64263.02	64263.07	64263.08	64256.29	64262.37	64262.38	64266.19	64278.18	64278.19	64253.16	64253.17	64278.02	64278.03	64278.04	64278.05	64253.18	64254.01
Date Collected	Criteria*	28-Dec-11	27-Dec-11	28-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	29-Dec-11	29-Dec-11	27-Dec-11	27-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	27-Dec-11	27-Dec-11						
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																							
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1248	1	< 0.05	0.366	< 0.05	< 0.05	0.132	0.0811	< 0.05	0.031	< 0.05	0.207	< 0.05	0.0949	0.112	0.0817	< 0.05	7.46 /J/A	28.4	0.263	< 0.05	0.0361	< 0.05	16.4	14.2
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB69-05	SB69-05-a	SB69-10	SB69-10-a	SB69-15	SB69-20	SB70-01.5	SB70-05	SB70-10	SB71-01.5	SB71-01.5-a	SB71-10	SB71-10-a	SB71-5	SB71-5-a	SB72-01.5	SB72-05	SB72-10	SB73-01.5	SB73-01.5-a	SB73-05	SB73-05-a	SB73-10	SB73-10-a
Lab Sample ID	Screening	64254.19	64254.2	64254.21	64254.22	64254.23	64254.25	64265.18	64265.19	64265.2	64254.07	64254.08	64254.11	64254.12	64254.09	64254.1	64254.03	64254.04	64254.05	64255.1	64255.11	64255.12	64255.13	64255.14	64255.15
Date Collected	Criteria*	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	28-Dec-11	28-Dec-11	28-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11
Polychlorinated Biphenyls by Method 808	32 (mg/kg)		•						•		•	•		•		•									
Aroclor-1016	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1221	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1232	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1242	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1248	1	1.49 /J/A	3.22	2.8 /J/A	4.67	3.77	0.356	0.155	< 0.05	< 0.05	82.9 /J/A	47.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.419	< 0.05	< 0.05	322	355	47.6	38.3	1710 /J/A	1090
Aroclor-1254	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1260	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor-1262	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25
Aroclor 1268	1	< 0.05	< 0.1	< 0.1	< 0.25	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 10	< 10	< 2.5	< 2.5	< 50	< 25

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion

A - Field duplicate RPD exceeded established criteria

			1	1	1	1	1	1	1	1	1	1	I	1	I	I		I	1			I		
		SB73-15	SB73-15-a	SB73-20	SB73-20-a	SB73-25	SB73-25-a	SB73-30	SB73-30-a	SB74-01.5	SB74-05	SB74-10	SB75-01.5	SB75-05	SB75-10	SB9B-08	SB9B-11	SB9B-13	SB9B-15	SB9B-17	SB9B-19	SB76-1	SB76-3	SB76-5
Lab Sample ID	Screening	64255.16	64255.17	64255.18	64255.19	64255.2	64255.21	64255.22	64255.23	64256.12	64256.13	64256.14	64256.19	64256.2	64256.21	64279.12	64279.13	64279.14	64279.15	64279.16	64279.17	67302.43	67302.44	67302.45
Date Collected	Criteria*	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	27-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	29-Dec-11	10/27/12	27-Oct-12	27-Oct-12
Polychlorinated Biphenyls by Method 808	32 (mg/kg)																							
Aroclor-1016	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	1180 /J/A	3650	31.4 /J/A	0.486	0.823 /J/A	0.122	0.169 /J/A	0.0683	51.4	< 0.05	< 0.05	70.2	2.74	< 0.05	0.203	82.2	34.6	263	134	0.266	< 0.05	< 0.05	< 0.05
Aroclor-1254	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	<~0.05~/J/E	< 0.05 /J/E	< 0.05 /J/E
Aroclor-1262	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 25	< 100	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 2.5	< 0.05	< 0.05	< 2.5	< 0.1	< 0.05	< 0.05	< 0.05	< 1	< 10	< 5	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB76-10	SB77-1	SB77-3	SB77-5	SB77-10	SB78-1	SB78-3	SB78-5	SB79-1	SB78-3	SB79-5	SB80-1	SB80-3	SB80-5	SB81-1	SB81-3	SB81-5	SB82-1	SB82-3	SB82-5	SB83-1	SB83-3	SB83-5
Lab Sample ID	Screening	67301.06	67301.11	67301.12	67301.13	67301.14	67243.05	67243.06	67243.07	67241.27	67243.06	67241.29	67192.1	67192.11	67192.12	67302.08	67302.09	67302.1	67157.21	67157.22	67157.23	67157.07	67157.08	67157.09
Date Collected	Criteria*	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-1
Polychlorinated Biphenyls by Method 808	32 (mg/kg)			•					•				•								•	•		
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	< 0.05	0.388	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.146	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.02	0.0555	0.0298 J	0.234	< 0.05	< 0.05	62	24.8	10
Aroclor-1254	1	< 0.05	0.241	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.787	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /J/E	< 0.05 /J/E	< 0.05 /J/	E < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		1	1			1	1		1	1		l	1	1			1			1		1	1	
		SB83-10	SB83-15	SB84-1	SB84-3	SB84-5	SB84-10	SB84-15	SB84-20	SB85-1	SB85-3	SB85-5	SB86-1	SB86-3	SB86-5	SB87-1	SB87-3	SB87-5	SB87-10	SB87-15	SB88-1	SB88-3	SB88-5	SB88-12
Lab Sample ID	Screening	67175.19	67175.2	67193.09	67193.1	67193.11	67193.15	67193.16	67193.17	67156.25	67156.26	67156.27	67302.03	67302.04	67302.05	67193.03	67193.04	67193.05	67269.01	67269.02	67176.17	67176.18	67176.19	67176.2
Date Collected	Criteria*	17-Oct-12	17-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	27-Oct-12	27-Oct-12	27-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	17-Oct-12	17-Oct-12	17-Oct-12	17-Oct-12
Polychlorinated Biphenyls by Method 808	2 (mg/kg)			•					•									•	•					
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	< 0.05	< 0.05	1.21	0.959	0.0813	< 0.05	< 0.05	0.0262 J	0.78	0.208	0.129	1.6	0.287	0.0414 J	7920	79.6	92.3	< 0.05	< 0.05	4160	46.3	3.13	< 0.05
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /J/E	< 0.05 /J/E	< 0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

Bold font and shading indicates the concentration exceeds

ND - Not Detected

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB88-15	SB88-20	SB89-1	SB89-3	SB89-5	SB89-10	SB89-15	SB89-20	SB90-1	SB90-3	SB90-5	SB90-10	SB90-15	SB90-20	SB91-1	SB91-1-a	SB91-3	SB91-3-a	SB91-5	SB91-5-a	SB91-10	SB91-10-a	SB91-15
Lab Sample ID	Screening	67176.21	67176.22	67176.09	67176.1	67176.11	67176.12	67176.13	67176.14	67176.01	67176.02	67176.03	67175.34	67175.35	67176.04	67193.2	67193.23	67193.21	67193.24	67193.22	67193.25	67193.26	67193.27	67192.01
Date Collected	Criteria*	17-Oct-12	18-Oct-12																					
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																							
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	< 0.05	< 0.05	0.0356 J	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	116	121	1.51 /J/A	0.798	0.383	0.499	0.0652	< 0.05	3.54 /J/A
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

- * Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.
- < the sample was not detected above the reporting limit indicated.
- -a Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

Bold font and shading indicates the concentration exceeds

ND - Not Detected

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB91-15-a	SB91-20	SB91-20-a	SB91-25	SB91-30	SB92-1	SB92-3	SB92-5	SB92-10	SB92-15	SB93-1	SB93-1-a	SB93-3	SB93-3-a	SB93-5	SB93-5-a	SB93-10	SB93-10-a	SB93-15	SB93-15-a	SB93-20	SB93-20-a	SB93-25	SB94-1
Lab Sample ID	Screening	67192.02	67192.03	67192.04	67192.05	67192.07	67194.01	67194.02	67194.03	67194.04	67194.05	67241.14	67241.15	67241.12	67241.13	67241.16	67241.17	67241.18	67241.19	67241.2	67241.21	67241.23	67241.24	67285.03	67207.01
Date Collected	Criteria*	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	18-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	19-Oct-12
Polychlorinated Biphenyls by Method 808	2 (mg/kg)					•				•							•								
Aroclor-1016	1	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	8.25	12.1 /J/A	25.5	5.42	< 0.05	0.153	< 0.05	< 0.05	< 0.05	< 0.05	22.7 /J/A	. 35	22.9	20.5	8.69	11.7	40.4 /J/A	26.2	506 /J/A	855	260 /J/A	602	0.025 J	J 1.29
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB94-3	SB94-5	SB94-10	SB94-15	SB94-20	SB95-1	SB95-3	SB95-5	SB95-10	SB96-1	SB96-3	SB96-5	SB96-10	SB96-15	SB97-1	SB97-3	SB97-5	SB97-10	SB97-15	SB98-1	SB98-3	SB98-5	SB98-10	SB98-15
Lab Sample ID	Screening	67207.02	67207.03	67207.05	67207.06	67207.07	67210.07	67210.08	67261.01	67261.02	67156.28	67156.29	67156.3	67157.16	67157.17	67156.19	67156.2	67156.21	67157.01	67157.02	67156.22	67156.23	67156.24	67175.07	67175.08
Date Collected	Criteria*	19-Oct-12	19-Oct-12	19-Oct-12	16-Oct-12																				
Polychlorinated Biphenyls by Method 808	2 (mg/kg)														•	•									
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	1.41	0.426	< 0.05	< 0.05	< 0.05	15.2	3.22	4.67	< 0.05	1090 /J/I	3240	12.2	0.0489 J	0.0293	1180 /J/I	3970 /J/I	175	< 0.05	< 0.05	3550	38.3	32.1	< 0.05	< 0.05
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /M/M	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion

A - Field duplicate RPD exceeded established criteria

		SB98-20	SB98-25	SB98-30	SB99-1	SB99-1-a	SB99-3	SB99-3-a	SB99-5	SB99-5-a	SB99-10	SB99-10-a	SB99-15	SB99-15-a	SB99-20	SB99-20-a	SB99-25	SB99-25-a	SB100-1	SB100-3	SB101-1	SB101-3	SB103-1	SB103-3
Lab Sample ID	Screening	67175.09	67175.1	67175.11	67157.1	67157.13	67157.11	67157.14	67157.12	67157.15	67175.24	67175.26	67175.25	67175.27	67175.28	67175.29	67175.3	67175.31	67156.1	67156.11	67156.01	67156.02	67302.31	67302.32
Date Collected	Criteria*	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	17-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	16-Oct-12	27-Oct-12	27-Oct-12							
Polychlorinated Biphenyls by Method 808	2 (mg/kg)			•				•			•			•									•	
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	< 0.05	< 0.05	< 0.05	19.1	25.8	0.639 /J/A	0.138	0.116 /J/A	0.536	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0294 J	< 0.05	0.177	< 0.0512	< 0.05	< 0.05
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 /J/E	E < 0.05 /J/I
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

			_																					
		SB104-1	SB104-3	SB105-1	SB105-3	SB105-5	SB105-10	SB105-15	SB106-1	SB106-1-a	SB106-3	SB106-3-a	SB106-5	SB106-5-a	SB106-10	SB106-15	SB107-1	SB107-3	SB107-5	SB107-10	SB-113-1'	SB-113-3'	SB-114-1'	SB-114-3'
Lab Sample ID	Screening	67302.39	67302.4	67207.12	67207.13	67207.14	67260.01	67260.02	67207.2	67207.23	67207.21	67207.24	67207.22	67207.25	67260.03	67260.04	67241.04	67241.05	67285.01	67285.02	14-04-0671-47	14-04-0671-8A	14-04-0671-41	14-04-0671-42
Date Collected	Criteria*	27-Oct-12	27-Oct-12	19-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	23-Oct-12	04/09/14	04/09/14	04/09/14	04/09/14												
Polychlorinated Biphenyls by Method 80	82 (mg/kg)		•		•		•	_	•										•	•				
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1248	1	0.174	< 0.05	6.37	0.115	0.376	< 0.05	< 0.05	2.08 /J/A	0.842	1.5	1.02	1.6	2.18	< 0.05	< 0.05	66.9	2.52	0.0345 J	J < 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1254	1	0.162	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.1	< 0.05	< 0.051	< 0.051
Aroclor-1260	1	< 0.05 /J/	E < 0.05 /J/E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.05	< 0.051	< 0.051
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

Bold font and shading indicates the concentration exceeds

ND - Not Detected

the screening criterion
A - Field duplicate RPD exceeded established criteria

			1		I	1	I		1		I		1	1	I		1						1	1	
		SB-115-1'	SB-115-3'	SB-116-1'	SB-116-3'	SB-117-1'	SB-117-3'	SB-117-5'	SB-118-1'	SB-118-3'	SB-118-5'	SB-118-10	SB-118-15'	SB-118-20'	SB-119-1'	SB-119-3'	SB-119-5'	SB-120-1'	SB-121-1'	SB-121-3'	SB-121-4.5'	SB-122-1'	SB-123-1'	SB-124-1'	SB-124-1-a'
Lab Sample ID	Screening	14-04-0671-36	14-04-0671-37	4-04-0671-2	14-04-0671-3	14-04-0671-2	14-04-0671-25	14-04-0671-	2 14-04-0718-	1 14-04-0718-	214-04-0718-3	14-04-0718-	-4 14-04-0718-5	14-04-0718-6	14-04-0671-11	14-04-0671-13	14-04-0671-14	14-04-0671-2	14-04-0671-4	14-04-0671-5	14-04-0671-48-A	14-04-0671-9	14-04-0671-10	14-04-0671-12	14-04-0671-15
Date Collected	Criteria*	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14	04/09/14
Polychlorinated Biphenyls by Method 808	2 (mg/kg)																								
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05 /M/M	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1248	1	< 0.05	< 0.05	< 0.05	< 0.05	45	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.11	< 0.05	< 0.05	0.17	0.64	1.1	0.68	11 /J/I	1.1	0.062	0.06
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	4.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05 /M/M	0.068	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.049	< 0.05	< 0.051	< 0.05	< 0.05	< 0.05	< 0.051	< 0.05
Aroclor 1268	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-128-1'	SB-129-1	SB-129-3	SB-129-5	SB-130-1	SB-130-1-a	SB-130-3'	SB-130-5'	SB-130-8'	DE011-022814	SB-132-1	SB-133-1	SB-134-1	SB-134-1-a	SB-136-1	SB-136-1-a	SB-137-1	SB-137-1-a	SB-138-1	SB-138-3
Lab Sample ID	Screening	14-04-0671-20	14-04-0718-11	14-04-0718-12	14-04-0718-13	14-04-0718-15	14-04-0718-17	14-04-0718-16	14-04-0718-18	14-04-0718-18	72408.01	74445.07	74445.10	74445.02	74445.03	74445.14	74445.15	74445.18	74445.19	74445.22	74637.01
Date Collected	Criteria*	04/09/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14	02/28/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14
Polychlorinated Biphenyls by Method 808	2 (mg/kg)						_							•	•	•					
Aroclor-1016	1	< 0.051 /M/M	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1221	1	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1232	1	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1242	1	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1248	1	2.3	1200	19	0.18	490 /J/A	940	270	42	280	0.344	< 0.05	0.11	< 0.05	< 0.05	0.03 J	< 0.05	0.22 /J/A	0.50	5.74	< 0.05
Aroclor-1254	1	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.12	0.19 J	2.62	30.40
Aroclor-1260	1	< 0.051 /M/M	20	0.49	< 0.05	9.6 /J/A	18 /J/I	6.3	0.65	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor-1262	1	< 0.051	< 5	< 0.05	< 0.05	< 5	< 5	< 5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05
Aroclor 1268	1	NA	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.25	< 0.05	< 0.05								

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-141-1	SB-142-1	SB-143-1	SB-146-1	SB-146-3	SB-147-5	SB-147-8	SB-148-1	SB-148-1-a	SB-148-3	SB-149-1	SB-149-1-a	SB-149-3	SB-149-5	SB-150-5	SB-150-8	SB-151-1	SB-151-3	SB-151-3a
Lab Sample ID	Screening	74445.27	74445.30	77385.22	77385.16	77385.17	77385.01	77385.02	77385.04	77385.05	77385.06	77385.10	77385.11	77385.12	77385.13	78821.03	78876.02	78682.19	78682.20	78682.21
Date Collected	Criteria*	09/18/14	09/18/14	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	06/17/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15
Polychlorinated Biphenyls by Method 808	2 (mg/kg)				•				•		•							•		-
Aroclor-1016	1	< 0.05	< 0.05	< 0.025	< 0.02525	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	0.36	0.23	0.72	0.853	831	1.020	< 0.025	11.80 /J/A	71.80	0.08	1.88	0.449	21.2	< 0.025	11.7	2.57	0.268	11.4	2.33
Aroclor-1254	1	0.08	< 0.05	< 0.025	0.845	< 0.025	0.511	< 0.025	4.43 /J/A	30.6	< 0.025	1.68	1.990	< 0.025	< 0.025	2.58	< 0.050	0.106	5.33	0.601
Aroclor-1260	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.125	< 1.25	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion

A - Field duplicate RPD exceeded established criteria

		SB-151-5	SB-151-8	SB-152-1	SB-152-3	SB-152-3a	SB-152-5	SB-154-1	SB-154-3	SB-154-5	SB-154-8	SB-155-1	SB-155-3	SB-156-1	SB-156-3	SB-157-1	SB-157-3	SB-158-1	SB-158-3	SB-159-1
Lab Sample ID	Screening	78821.04	78876.03	78682.14	78682.12	78682.13	78821.02	78682.06	78682.07	78821.01	78876.01	78682.11	78682.1	80593.17	80593.19	80593.11	80593.15	80593.04	80593.05	80593.08
Date Collected	Criteria*	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	10/15/15	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16
Polychlorinated Biphenyls by Method 808	32 (mg/kg)							•	•							•		•	•	
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	1.89	6.94	0.74	1.72	1.95	0.237	< 0.1	< 0.05	1.11	< 0.05	< 0.25	6.82	0.882	< 0.05	1.08	< 0.05	1.66	< 0.05	< 0.05
Aroclor-1254	1	0.376	< 0.05	0.296	0.582	1.17	0.084	1.26	< 0.05	0.367	< 0.05	< 0.25	2.43	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.05	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Notes				•	•	-	-	•	•				-							

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected Bold font and shading indicates the concentration exceeds

the screening criterion

A - Field duplicate RPD exceeded established criteria

		SB-159-3	SB-160-1	SB-160-3	Sb-161-1	SB-161-3	SB-162-1	SB-162-3	SB-163-1	SB-163-2.5	SB-164-1	SB-169-1	SB-176-1	SB-177-1	SB-177-3	SB-177-3-a	SB-178-1	SB-178-3	SB-178-3-a	SB-179-1	SB-179-3
Lab Sample ID	Screening	80593.09	80592.09	80592.10	80592.04	80592.05	80592.24	80592.26	80592.16	80592.18	81153.48	81153.50	81153.52	81153.04	81153.06	81153.05	81153.11	81153.13	81153.12	81153.17	81153.19
Date Collected	Criteria*	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	03/10/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16	04/14/16
Polychlorinated Biphenyls by Method	8082 (mg/kg)	•	•			•					_										
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1248	1	0.276	0.337	0.0526	< 0.05	< 0.05	0.113	< 0.05	0.0419 Ј	0.0675 J	< 0.05	< 0.05	0.329 /M/M	0.985	< 0.05	< 0.05	< 0.05	0.0604 /J/A	0.180	< 0.05	0.150
Aroclor-1254	1	0.179	< 0.050	< 0.05	< 0.05	< 0.05	0.059	< 0.05	0.05	0.1	< 0.05	0.336	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1260	1	0.0811	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor-1262	1	< <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1268	1	< <0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.

-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected

Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

		SB-179-3-a	SB-180-1	SB-180-2	SB-180-2-a	SB-173-0.5	SB-182-0.5	SB-205-0.5	SB-205-0.5a	SB-206-0.5	SB-207-0.5	SB-210-0.5	SB-215-0.5
Lab Sample ID	Screening	81153.18	81153.24	81153.26	81153.25	83803.27	83803.16	83803.18	83803.19	83803.21	83803.25	83803.23	83803.29
Date Collected	Criteria*	04/14/16	04/14/16	04/14/16	04/14/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16	08/03/16
Polychlorinated Biphenyls by Method 808	2 (mg/kg)												
Aroclor-1016	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1221	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1232	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1242	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1248	1	< 0.05	< 0.05	0.394 /J/A	0.252	0.212	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.031 J	< 0.025
Aroclor-1254	1	< 0.05	< 0.05	< 0.05	< 0.05	0.099	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1260	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor-1262	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Aroclor 1268	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025

* - Screening criteria is 1 mg/kg, based on the EPA 40 CFR Section 761(a)(4(i)(A) high occupancy/unrestricted use standard.

< - the sample was not detected above the reporting limit indicated.
-a - Indicates a field duplicate sample.

mg/kg - milligrams per kilogram NA - Not Analyzed

ND - Not Detected
Bold font and shading indicates the concentration exceeds

the screening criterion
A - Field duplicate RPD exceeded established criteria

ATTACHMENT A DIG ALERT TICKET

Cavers, Chris

From: Foes, David

Sent: Tuesday, October 13, 2015 8:28 AM

To: Cavers, Chris

Subject: FW: DigAlert Confirmation for Ticket B52850321-00B

David Foes, CPESC, QSP/QSD P: (714) 689-7218 C: (949) 463-3637

From: noreply@digalert.org [mailto:noreply@digalert.org]

Sent: Monday, October 12, 2015 2:38 PM

To: Foes, David

Subject: DigAlert Confirmation for Ticket B52850321-00B

EMLCFM 00700B USAS 10/12/15 14:38:04 B52850321-00B NORM NEW GRID

Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket: B52850321 Date: 10/12/15 Time: 14:37 Oper: SME Chan: WEB

Old Tkt: B52850321 Date: 10/12/15 Time: 14:10 Oper: DIGEXPRESS Revision: 00B

Company: AECOM Caller: DAVID FOES

Co Addr: 999 TOWN AND COUNTRY

City&St: ORANGE, CA Zip: 92648

Phone: 714-689-7218 Ext: Call back: 8-5
Formn: DAVID FOES Phone: 949-463-3637

Email: DAVID.FOES@AECOM.COM

State: CA County: ORANGE Place: SANTA ANA

Delineated: Y

Delineated Method: WHITEPAINT

Address: 666 Street: E DYER RD

Excav Enters Into St/Sidewalk: N

Grids: 0859G0134

Lat/Long : 33.709117/-117.859937 33.709052/-117.855506 : 33.708299/-117.859949 33.708234/-117.855518

Caller GPS:

Boring: Y Explosives: N Vacuum: N

Re-Mark: N

Work : BORINGS

Wkend: N Night: N

Work date: 10/15/15 Time: 07:00 Priority: 2

Instruct : "MARK BY" Permit: NOT REQUIRED

Done for : ITT

Tkt Exp: 11/09/15

Mbrs :

ATTDSOUTH AT&T DISTRIBUTION - PHONE	ATT DAMAGE PREVENTION HO	510-645-2929
CSD91 ORANGE CO SANITATION	CONTROL CENTER	714-593-7025
IRW01 IRVINE RANCH WTR	ED CORRAL	714-231-5227
LVL3CM LEVEL 3 COMMUNICATIONS	TECHNICIAN ON DUTY	877-366-8344x3
MCISOCAL MCI (VERIZON BUSINESS) FIBE	FIBER SECURITY DEPT	800-624-9675
SAN02 C/OF SANTA ANA-S,W,,L,D	BILLI LOPEZ	714-647-3380
SCE12 SC EDISON-TRANSMISSION	GREG BUTCHKO	714-973-5407
SCG2XQ SC GAS - SANTA ANA	LEAD DISPATCHER CHUCK J	800-603-7060
USCE02 UTILIQUEST SCE-CENTRAL OR CST	SC EDISON PERSONNEL	800-611-1911
USCE04 UTILIQUEST 4 SCE - SADDLEBACK	SC EDISON PERSONNEL	800-611-1911
UTWCSORG UTILITUEST 4 TIME WARNER CA		714-715-4706
XOCOMMOR XO COMM - OR CO - FIBER	Information not provided	

Cavers, Chris

From: Foes, David

Sent: Tuesday, March 08, 2016 11:16 AM

To: Cavers, Chris

Subject: Fwd: DigAlert Confirmation for Ticket A60680622-00A

Thanks,

David Foes 9494633637

----- Original message ------From: noreply@digalert.org

Date: 3/8/2016 10:59 AM (GMT-08:00)

To: "Foes, David" < <u>David.Foes@aecom.com</u>>

Subject: DigAlert Confirmation for Ticket A60680622-00A

EMLCFM 00747A USAS 03/08/16 10:57:43 A60680622-00A SHRT NEW GRID

Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket: A60680622 Date: 03/08/16 Time: 10:51 Oper: MAT Chan: 100 Old Tkt: A60680622 Date: 03/08/16 Time: 10:57 Oper: MAT Revision: 00A

Company: CORPROBE INTERNATIONAL Caller: CHRYSTA WELLS - AECOM

Co Addr: 5075 WALNUT GROVE AVE

City&St: SAN GABRIEL, CA Zip: 91776 Phone: 657-333-6303 Ext: Call back: 7AM-5PM

Formn: DAVID FOES Phone: 949-463-3637 Ext: CELL

Email: DAVID.FOES@AECOM.COM

State: CA County: ORANGE Place: SANTA ANA

Delineated: Y

Delineated Method: WHITEPAINT

Address: 666 Street: E DYER RD

X/ST 1 : TECH CENTER DR
X/ST 2 : HALLADAY ST
MPM 1: MPM 2:

Locat: DRILLING INSIDE THE BUILDING, AND ALSO ON THE PROPERTY OUTSIDE THE

: BUILDING (*CALLER STATES ADDRESS IS ON THE S/SIDE OF E/BOUND E DYER RD

: BTWN TECH CENTER DR AND THE W/INTER OF HALLADAY ST)

Excav Enters Into St/Sidewalk: N

Grids: 0859G0134

Lat/Long : 33.708965/-117.860325 33.708945/-117.855576 : 33.708147/-117.860328 33.708128/-117.855579

Caller GPS

Boring: Y Explosives: N Vacuum: N

Re-Mark: N

Work : DRILLING SOIL SAMPLES (21)

Wkend: N Night: N

Work date: 03/10/16 Time: 07:00 Priority: 1

Instruct : MARK BY Permit: NOT REQUIRED

Done for : I T T CORP

Tkt Exp: 04/05/16

Mbrs :

ATTDSOUTH AT&T DISTRIBUTION - PHONE	ATT DAMAGE PREVENTION HO	510-645-2929
CSD91 ORANGE CO SANITATION	CONTROL CENTER	714-593-7025
IRW01 IRVINE RANCH WTR	ED CORRAL	714-231-5227
LVL3CM LEVEL 3 COMMUNICATIONS	TECHNICIAN ON DUTY	877-366-8344x3
MCISOCAL MCI (VERIZON BUSINESS) FIBE	FIBER SECURITY DEPT	800-624-9675
SAN02 C/OF SANTA ANA-S,W,,L,D	BILLI LOPEZ	714-647-3380
SCE12 SC EDISON-TRANSMISSION	GREG BUTCHKO	714-973-5407
SCG2XQ SC GAS - SANTA ANA	LEAD DISPATCHER CHUCK J	800-603-7060
USCE02 UTILIQUEST SCE-CENTRAL OR CST	SC EDISON PERSONNEL	800-611-1911
USCE04 UTILIQUEST 4 SCE - SADDLEBACK	SC EDISON PERSONNEL	800-611-1911
UTWCSORG UTILITUEST 4 TIME WARNER CA	DAVE DOLNEY	714-715-4706
XOCOMMOR XO COMM - OR CO - FIBER	Information not provided	

Cavers, Chris

From: Foes, David

Sent: Monday, April 11, 2016 9:08 AM

To: Cavers, Chris

Subject: FW: DigAlert Confirmation for Ticket A61020319-00A

David Foes, CPESC, QSP/QSD P: (714) 689-7218 C: (949) 463-3637

From: noreply@digalert.org [mailto:noreply@digalert.org]

Sent: Monday, April 11, 2016 9:06 AM

To: Foes, David

Subject: DigAlert Confirmation for Ticket A61020319-00A

EMLCFM 00452A USAS 04/11/16 09:06:03 A61020319-00A NORM UPDT GRID

Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket: A61020319 Date: 04/11/16 Time: 09:05 Oper: KRI Chan: 200 Old Tkt: A60680622 Date: 03/08/16 Time: 10:57 Oper: MAT Revision: 00A

Company: CORPROBE INTERNATIONAL Caller: CHRYSTA WELLS - AECOM

Co Addr: 5075 WALNUT GROVE AVE

City&St: SAN GABRIEL, CA Zip: 91776 Phone: 657-333-6303 Ext: Call back: 7AM-5PM

Formn: DAVID FOES Phone: 949-463-3637 Ext: CELL

Email: DAVID.FOES@AECOM.COM

State: CA County: ORANGE Place: SANTA ANA

Delineated: Y

Delineated Method: WHITEPAINT

Address: 666 Street: E DYER RD

X/ST 1 : TECH CENTER DR
X/ST 2 : HALLADAY ST
MPM 1: MPM 2:

Locat: DRILLING INSIDE THE BUILDING, AND ALSO ON THE PROPERTY OUTSIDE THE

: BUILDING (*CALLER STATES ADDRESS IS ON THE S/SIDE OF E/BOUND E DYER RD

: BTWN TECH CENTER DR AND THE W/INTER OF HALLADAY ST)

Excav Enters Into St/Sidewalk: N

Grids: 0859G0134

Lat/Long : 33.708965/-117.860325 33.708945/-117.855576 : 33.708147/-117.860328 33.708128/-117.855579

Caller GPS:

Boring: Y Explosives: N Vacuum: N

Re-Mark: N

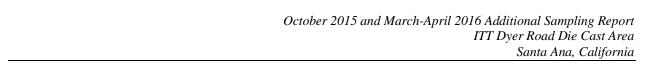
Work : DRILLING SOIL SAMPLES (21)

Wkend: N Night: N

Work date: 04/11/16 Time: 09:05 Priority: 2

Instruct : WORK CONTINUING Permit: NOT REQUIRED

Done for : I T T CORP


Tkt Exp: 05/09/16

COMMENTS

REF EXP TICKET A060680622, UPDATE ONLY-WORK CONT PER DAVID FOES--[KRI 04/11/16 09:05]

Mbrs :

ATTDSOUTH AT&T DISTRIBUTION - PHONE	ATT DAMAGE PREVENTION HO	510-645-2929
CSD91 ORANGE CO SANITATION	CONTROL CENTER	714-593-7025
IRW01 IRVINE RANCH WTR	ED CORRAL	714-231-5227
LVL3CM LEVEL 3 COMMUNICATIONS	TECHNICIAN ON DUTY	877-366-8344x3
MCISOCAL MCI (VERIZON BUSINESS) FIBE	FIBER SECURITY DEPT	800-624-9675
SAN02 C/OF SANTA ANA-S,W,,L,D	BILLI LOPEZ	714-647-3380
SCE12 SC EDISON-TRANSMISSION	GREG BUTCHKO	714-973-5407
SCG2XQ SC GAS - SANTA ANA	LEAD DISPATCHER CHUCK J	800-603-7060
USCE02 UTILIQUEST SCE-CENTRAL OR CST	SC EDISON PERSONNEL	800-611-1911
USCE04 UTILIQUEST 4 SCE - SADDLEBACK	SC EDISON PERSONNEL	800-611-1911
UTWCSORG UTILITUEST 4 TIME WARNER CA	DAVE DOLNEY	714-715-4706
XOCOMMOR XO COMM - OR CO - FIBER	Information not provided	

ATTACHMENT B

ANALYTICAL/LABORATORY DATA AND DATA ASSESSMENT REPORTS

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 14

Date Received 10/15/2015
Date Reported 10/26/2015

Job Number	Order Date	Client
78682	10/15/2015	AECOM

Project ID: 60430750

Project Name: ITT Dyer Road Site: ITT Dyer Road

Santa Ana, CA

Enclosed please find results of analyses of 1 water and 14 soil and 1 asphalt samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

94602

TEST INSTRUCTIONS & COMMENTS Time: 1635 က် က် Cull Dand Feg 949463 3637 Vith question Page _ .00 2.03 1.04 0. 000 0 -08 Ented Nacht 0. 78682.11 10 115 115 RECEIVED BY LABORATORY Time: Time: AETL JOB NO. 78682 RECEIVED BY: rinted Name X 1300 80552 20473 62808 20458 Vaymytorsos 79471 W X 7 X 3828 Printed Name: VOGV RELINQUISHED B SAMPLER: PRES. Capariza Nove Date: Iolic/Ic PROJECT # 60430 BS PROJECT MANAGER CHIS CAUBLE 0/2 NUMBER/SIZE PHONE 944463 3637 CONTAINER Sleeve DATA DELIVERABLE REQUIRED - TO BE FILLED BY LABORATORY Asphult MATRIX GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) S Y/N/NA AN / K SAMPLES ACCEPTED Y/N 2080 0834 8280 TIME CSEI o Ba 0801 0825 0821 0755 6510 0856 0835 PROPERLY COOLED 25 HARD COPY PDF SAMPLES INTACT 999 Town & Country Dyer Rout DATE 10/15/16 Santa Anajch PROJECT NAME ITT DYPN ROAD SAME DAY
NEXT DAY
2 DAYS
3 DAYS LAB ID SAMPLE RECEIPT **TURN AROUND TIME** AECOM 78 RECEIVED IN GOOD COND(Y)/ N TOTAL NUMBER OF CONTAINERS NORMAL RUSH CUSTODY SEALS Y N NA 5457-89-153-25-12-8 COMPANY ADDRESS 513-154-0.05 SB-452-2 50-152-0.05 5B-154-33 50-152-3 58-155-0.03 SAMPLE ID 5B-154-8 Sp. 151-00 512-154-1 5R-155-3 SB-15-5 512155-1 SB-154-8 SITE NAME COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com American Environmental Testing Laboratory Inc.

CHAIN OF CUSTODY RECORD

Nº 79023

Chinga To	iei. (eee) 266-AE1L • (e16) 643-6200 • Fax: (e16) 643-6640 • WWW.aeuab.com	1 2 0070-C+0 (G	د د ه (۱۵۱۵) ،۸۵	* w w * 0+00-	/.aetiau,com				Z	13023
	AECOM		PRO	JECT MANAG	PROJECT MANAGER CLINIL CA	Caner	AETL JOB No.	78682 18682	g.	Page 2 of 2
COMPANY ADDRESS	agy The	Town & Country	コンケント		94946333)		ANALYSIS REQUESTED	TEST INSTRUCTION	TEST INSTRUCTIONS & COMMENTS
PROJECT NAME	IT DIPL	Drpv Road			PROJECT # 60430 750	75	1055 E			
SITE NAME AND	ITT DA	yor Ruad	~	# Od			. 15-7			
ADDRESS Sq	Santa Ana, C/						3N1 808			
SAMPLEID	LAB ID	DATE	TIME	MATRIX	CONTAINER NUMBER/SIZE	PRES.	1211y 1211y			
152-152-1	78682.14	JUSI JOJ	22.5	50,	Stacre	NºK	7			
12-12-21	78682.15		_{ट्या} ट्				V			
50-152-8	78682.16		<u>अ</u>				メ			
SR-150-5'	75682-17		0925				X			
5B-150-81	78682-18		64%				X			
1-151-15	78682-19		0932				*			
1 513-151-3			260				×			
58-151-30	18682-21		* 100 m				₹			
3-151-SE	78682.11		04%				¥			
513-151-8'	78682023		0446	P	4		×			
F13-101515-2	78682.24	4	2101	wake	Ambio	A	×			
13 14										
25										
SAMPLE	SAMPLE RECEIPT - TO	TO BE FILLED BY LABORATORY	BY LAB	CHATOF		RELINQUISHED BY SAMPLER:	+	RELINQUISHED BY:	2 RELINQUISHED BY:	3Y: 3.
TOTAL NUMBER OF CONTAINERS	NTAINERS	PROPER	PROPERLY COOLED	Y N / NA	Signature:	ure:	1.1	Signature:	Signature: (M.)	
CUSTODY SEALS Y (N /)NA	/NA	SAMPLE	SAMPLES INTACT (Y/A / NA	N / NA	Printed	\triangleright	and the	Printed Name:	Printed Van	
RECEIVED IN GOOD COND.	N (V) DN	SAMPLE	SAMPLES ACCEPTED	y/N	Date:		Time: 1300		Time: Date: Col. Co	Time: 1635
	TURN	TURN AROUND TIME	Щ		RECE	RECEIVED BY:	+	RECEIVED BY:	2. RECEIVED BY LABORATORY:	HET 3.
NORMAL	RUSH		□ SAME DAY	D 2 DAYS		JI'RE		Signature:	Signature:	
]		LI NEXT DAY			Printed Names. April 1. Paril 1. Date: 1. Times of Times	"ILINO	Printed Name:	Printed Name:	10%
- 6						10/12/15	1200	Date	10/15/1/c	Ime: 1635
DISTRIBUTION: WHI	WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account	ANARY - Labor	atory, PINK	- Project/Ac		ELLOW - San	Manager, YELLOW - Sampler/Originator			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60430750

Date Received 10/15/2015
Date Reported 10/26/2015

Job Number	Order Date	Client
78682	10/15/2015	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 24 samples with the following specification on 10/15/2015.

Lab :	ID	Sample ID	S	Sample Date	Matri	.x		Quantity	Of	Containers
78682.2	14	EB-101515-d		10/15/2015	Aquec	ous			1	
Me	ethod	^ Submethod		Req	Date	Priority	TAT	Unit	s	
80	082			10/22	2/2015	2	Normal			
Lab :		Sample ID		Sample Date	Matri	.x		Quantity	Of	Containers
78682.0	12	SB-154-0.05		10/15/2015	Soil				1	
78682.0	13	SB-155-0.05		10/15/2015	Soil				1	
78682.0	4	SB-152-0.05		10/15/2015	Soil				1	
78682.0	15	SB-151-0.05		10/15/2015	Soil				1	
78682.0	16	SB-154-1		10/15/2015	Soil				1	
78682.0	7	SB-154-3		10/15/2015	Soil				1	
78682.1	. 0	SB-155-3		10/15/2015	Soil				1	
78682.1	.1	SB-155-1		10/15/2015	Soil				1	
78682.1	.2	SB-152-3		10/15/2015	Soil				1	
78682.1	. 3	SB-152-3a		10/15/2015	Soil				1	
78682.1	. 4	SB-152-1		10/15/2015	Soil				1	
78682.1	.9	SB-151-1		10/15/2015	Soil				1	
78682.2	0	SB-151-3		10/15/2015	Soil				1	
78682.2	21	SB-151-3a		10/15/2015	Soil				1	
Me	ethod	^ Submethod		Req	Date	Priority	TAT	Unit	s	
(8	3082)				2/2015	2	Normal	ug/Kg	3	
78682.0	8	SB-154-5		10/15/2015	Soil				1	
78682.0	19	SB-154-8		10/15/2015	Soil				1	
78682.1	.5	SB-152-5		10/15/2015	Soil				1	
78682.1	.6	SB-152-8		10/15/2015	Soil				1	
78682.1	.7	SB-150-5		10/15/2015	Soil				1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Method ^ Submethod

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60430750

Date Received 10/15/2015
Date Reported 10/26/2015

TAT

Job Number	Order Date	Client
78682	10/15/2015	AECOM

Units

CERTIFICATE OF ANALYSIS CASE NARRATIVE

78682.18	SB-150-8	10/15/2015	Soil	1
78682.22	SB-151-5	10/15/2015	Soil	1
78682.23	SB-151-8	10/15/2015	Soil	1

Req Date

A	RCHIVE			10/22/20	15	2	Normal			
Lab :	ID Sa	ample ID	Sample D	ate	Matrix			Quantity	Of	Containers
78682.0)1 S	B-153-0.05	10/15/20	015	Solid				1	

02.01	DD 133 0.03	10/13/2013	~		-
Met	hod ^ Submethod	Req Date	Priority	TAT	Units
(80	32)	10/22/2015	2	Normal	ug/Kg

Priority

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Raymana
Checked By:	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102015B

		QC Batch	NO: 102013B		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			10/20/2015		
Preparation Method			3540C		
Date Analyzed			10/22/2015		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		69.0		
Tetrachloro-m-xylene	30-150		92.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

ITT Dyer Road Santa Ana, CA

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60430750

Project Name: ITT Dyer Road

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102015B

	40 Date::	10. 1020135				
		78682.01				
Client Sample I.D.		SB-153-0.05				
		10/15/2015				
		10/20/2015				
		3540C				
		10/22/2015				
		Solid				
		ug/Kg				
		5				
MDL	PQL	Results				
125	250	ND				
125	250	ND				
125	250	ND				
125	250	ND				
125	250	331				
125	250	193Ј				
125	250	ND				
125	250	ND				
125	250	ND				
		78682.01				
%Rec.Limit		% Rec.				
30-150		114				
30-150		85.8				
	125 125 125 125 125 125 125 125 125 125	MDL PQL 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250	78682.01 SB-153-0.05 10/15/2015 10/20/2015 3540C 10/22/2015 Solid ug/Kg 5 Solid ug/Kg 5 Solid ug/Kg 125 250 ND 78682.01 %Rec.Limit % Rec. 30-150 114	78682.01 SB-153-0.05 10/15/2015 10/20/2015 3540C 10/22/2015 Solid ug/Kg 5 Solid ug/Kg 5 Solid 125 250 ND 125	78682.01 SB-153-0.05 10/15/2015 10/20/2015 3540C 10/22/2015 Solid ug/Kg 5 Solid ug/Kg 5 Solid 125 250 ND 125	78682.01 SB-153-0.05 10/15/2015 10/20/2015 3540C 10/22/2015 Solid ug/Kg S Solid ug/Kg S Solid Ug/Kg S Solid Solid

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102015A

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			10/20/2015		
Preparation Method			3540C		
Date Analyzed			10/22/2015		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		69.0		
Tetrachloro-m-xylene	30-150		92.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Attn:

Site

ITT Dyer Road

Santa Ana, CA

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Chris Cavers

Page: 5

60430750 Project ID:

Project Name: ITT Dyer Road

AETL Job Number	Submitted	Client
78682	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102015A							
Our Lab I.D.			78682.02	78682.03	78682.04	78682.05	
Client Sample I.D.			SB-154-0.05	SB-155-0.05	SB-152-0.05	SB-151-0.05	
Date Sampled			10/15/2015	10/15/2015	10/15/2015	10/15/2015	
Date Prepared			10/20/2015	10/20/2015	10/20/2015	10/20/2015	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			10/22/2015	10/22/2015	10/22/2015	10/22/2015	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			5	5	5	5	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	125	250	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	125	250	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	125	250	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	125	250	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	125	250	194J	605	417	795	
Aroclor-1254 (PCB-1254)	125	250	130J	273	223J	338	
Aroclor-1260 (PCB-1260)	125	250	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	125	250	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	125	250	ND	ND	ND	ND	
Our Lab I.D.			78682.02	78682.03	78682.04	78682.05	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		98.6	102	82.7	110	
Tetrachloro-m-xylene	30-150		81.4	65.6	67.4	72.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Site

ITT Dyer Road

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Santa Ana, CA

Telephone: (714)973-9740 Chris Cavers Attn: Page:

60430750 Project ID:

Project Name: ITT Dyer Road

AETL Job Number	Submitted	Client
78682	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102115A

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			10/21/2015		
Preparation Method			3550B		
Date Analyzed			10/21/2015		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		62.9		
Tetrachloro-m-xylene	30-150		64.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60430750

Project Name: ITT Dyer Road

ITT Dyer Road Santa Ana, CA

Site

l	AETL Job Number	Submitted	Client
	78682	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102115A

		QC Batch	No: 102115A		
Our Lab I.D.			78682.06		
Client Sample I.D.			SB-154-1		
Date Sampled			10/15/2015		
Date Prepared			10/21/2015		
Preparation Method			3550B		
Date Analyzed			10/21/2015		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	ND		
Aroclor-1254 (PCB-1254)	50	100	1,260		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		
Our Lab I.D.			78682.06		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		102		
Tetrachloro-m-xylene	30-150		104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Site

ITT Dyer Road

AECOM Environment 999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page:

60430750 Project ID:

Project Name: ITT Dyer Road Santa Ana, CA

AETL Job Number	Submitted	Client
78682	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102115A

Our Lab I.D. 78682.07 78682.10 78682.11 78682.12 78682.13 SB-152-3a Client Sample I.D. SB-154-3 SB-155-3 SB-155-1 SB-152-3 Date Sampled 10/15/2015 10/15/2015 10/15/2015 10/15/2015 10/15/2015 Date Prepared 10/21/2015 10/21/2015 10/21/2015 10/21/2015 10/21/2015 3550B 3550B 3550B 3550B 3550B Preparation Method Date Analyzed 10/21/2015 10/21/2015 10/21/2015 10/21/2015 10/21/2015 Matrix Soil Soil Soil Soil Soil Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg **Dilution Factor** Analytes Results Results Results Results Results MDL **PQL** Aroclor-1016 (PCB-1016) 25.0 50.0 ND ND ND ND ND Aroclor-1221 (PCB-1221) 25.0 50.0 ND ND ND ND ND 25.0 50.0 Aroclor-1232 (PCB-1232) ND ND ND ND ND 50.0 Aroclor-1242 (PCB-1242) 25.0 ND ND ND ND ND Aroclor-1248 (PCB-1248) 25.0 50.0 ND 6,820 ND 1,720 1,950 25.0 50.0 ND 2,430 582 1,170 Aroclor-1254 (PCB-1254) ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND ND ND ND ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND ND ND ND ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND ND ND ND ND Our Lab I.D. 78682.07 78682.10 78682.11 78682.12 78682.13 %Rec.Limit Surrogates % Rec. % Rec. % Rec. % Rec. % Rec. 30-150 85.6 68.6 68.8 82.7 84.0 Decachlorobiphenyl Tetrachloro-m-xylene 30-150 118 86.8 96.6 117 110

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102115A

Our Lab I.D.			78682.14	78682.19	78682.20	78682.21	
Client Sample I.D.			SB-152-1	SB-151-1	SB-151-3	SB-151-3a	
Date Sampled			10/15/2015	10/15/2015	10/15/2015	10/15/2015	
Date Prepared			10/21/2015	10/21/2015	10/21/2015	10/21/2015	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			10/21/2015	10/21/2015	10/21/2015	10/21/2015	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	739	268	11,400	2,330	
Aroclor-1254 (PCB-1254)	25.0	50.0	296	106	5,330	601	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			78682.14	78682.19	78682.20	78682.21	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		92.2	75.6	77.6	88.4	
Tetrachloro-m-xylene	30-150		125	116	103	123	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 102115MB1

0 7 1 7 5		QO Batch N				
Our Lab I.D.			Method Blank			
Client Sample I.D.				EB-101515-d		
Date Sampled				10/15/2015		
Date Prepared			10/21/2015	10/21/2015		
Preparation Method			3510C	3510C		
Date Analyzed			10/23/2015	10/23/2015		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	78682.24		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		76.9	80.5		
Tetrachloro-m-xylene	75-125		89.8	81.1		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60430750

Project Name: ITT Dyer Road

Site ITT Dyer Road

Santa Ana, CA

	AETL Job Number	Submitted	Client
ſ	78682	10/15/2015	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102115MB1; Dup or Spiked Sample: 1021PCB; LCS: Clean Water; QC Prepared: 10/21/2015; QC Analyzed: 10/23/2015; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1260 (PCB-1260)	0.00	5.00	4.42	88.4	5.00	4.58	91.6	3.56	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	1.00	0.846	84.6	1.00	0.848	84.8	<1	75-125	<20
Tetrachloro-m-xylene	0.00	1.00	0.873	87.3	1.00	0.882	88.2	1.03	75-125	<20

QC Batch No: 102115MB1; Dup or Spiked Sample: 1021PCB; LCS: Clean Water; QC Prepared: 10/21/2015; QC Analyzed: 10/23/2015; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	4.14	82.8	75-125			
Surrogates							
Decachlorobiphenyl	1.00	0.757	75.7	75-125			
Tetrachloro-m-xylene	1.00	0.808	80.8	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 12

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

l	AETL Job Number	Submitted	Client
	78682	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102015A; LCS: Clean Sand; LCS Prepared: 10/20/2015; LCS Analyzed: 10/22/2015; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	277	90.8	500	358	84.0	7.8	50-150	<20	
Aroclor-1260 (PCB-1260)	500	435	97.8	500	472	94.6	3.3	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	34.2	66.4	50.0	35.3	65.0	2.1	30-150	<20	
Tetrachloro-m-xylene	50.0	26.2	92.2	50.0	37.5	95.6	3.6	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

 AETL Job Number
 Submitted
 Client

 78682
 10/15/2015
 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102115A; Dup or Spiked Sample: 78718.04; LCS: Clean Sand; QC Prepared: 10/21/2015; QC Analyzed: 10/21/2015; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	439	87.8	500	328	65.6	28.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	515	103	500	487	97.4	5.6	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	39.9	79.8	50.0	39.3	78.6	1.5	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	57.5	115	50.0	48.7	97.4	16.6	30-150	<20

QC Batch No: 102115A; Dup or Spiked Sample: 78718.04; LCS: Clean Sand; QC Prepared: 10/21/2015; QC Analyzed: 10/21/2015; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	289	57.8	500	306	61.2	5.7	50-150	<20	
Aroclor-1260 (PCB-1260)	500	420	84.0	500	467	93.4	10.6	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	35.3	70.6	50.0	36.9	73.8	4.4	30-150	<20	
Tetrachloro-m-xylene	50.0	42.1	84.2	50.0	45.2	90.4	7.1	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **14**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78682 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102015B; LCS: Blank; LCS Prepared: 10/20/2015; LCS Analyzed: 10/22/2015; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	277	90.8	500	358	84.0	7.8	50-150	<20	
Aroclor-1260 (PCB-1260)	500	435	97.8	500	472	94.6	3.3	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	34.2	66.4	50.0	35.3	65.0	2.1	30-150	<20	
Tetrachloro-m-xylene	50.0	26.2	92.2	50.0	37.5	95.6	3.6	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 5

Date Received 10/15/2015
Date Reported 10/29/2015

Job Number	Order Date	Client
78821	10/27/2015	AECOM

Project ID: 60430750

call.

Project Name: ITT Dyer Road Site: ITT Dyer Road

Santa Ana, CA

Enclosed please find results of analyses of 4 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

CHAIN OF CUSTODY RECORD

94602

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

IEST INSTRUCTIONS & COMMENTS Time: 1634 Call Dans Facs 944463 3637 VITH 9 westions Page 1 4.04 78682, 13 RELINQUISHED BY: 202 2.03 18682.01 0 Prince Nach in 9 Date: 1 // // // RECEIVED BY LABORATORY: 0 Time: ANALYSIS REQUESTED RELINQUISHED BY: RECEIVED BY: rinted Name rinted Name Signature: Signature: AETL JOB No. 7 DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator 1300 8055E 20H5E Valymutfar808 X Printed Name: Valv 2 Fig. RELINQUISHED BY SAMPLER: PRES. MANTONIA ! Signature: 45 282 PROJECT # 60430 BO PHOJECT MANAGER CHINS CHURS CONTAINER NUMBER/SIZE PHONE 9444633637 Sleave DATA DELIVERABLE REGUIRED SAMPLE RECEIPT - TO BÉ FILLED BY LABORATORY Aspha 1 MATRIX # Od FAX ☐ HARD COPY
☐ PDF
☐ GEOTRACKER (GLOBAL ID) __
☐ OTHER (PLEASE SPECIFY) ___ T S PROPERLY COOLED Y N / NA WAY! NA SAMPLES ACCEPTED (Y) N 8280 0834 TIME 2080 **1**80 6800 8755 0/23 0825 0821 0856 0750 0835 22 SAMPLES INTACT R 999 Town & Country Over Rout DATE 10/15/18 HnaICA PROJECT NAME IT TO LOV ROAD SAME DAY
INEXT DAY
2 DAYS
3 DAYS LAB ID Santa **TURN AROUND TIME** AECOM RECEIVED IN GOOD COND Y N TOTAL NUMBER OF CONTAINERS 40 NORMAL | RUSH CUSTODY SEALS Y (N) NA \$153-99-153-SB-154-0.05 SG-157-22 COMPANY ADDRESS Sn-151-00 JB 15 4 SAMPLE ID 58-155-0.05 B-151-00 51-15H-3 213-121-13t 58-154-8 SR-155-3 1451 -215 \$13-15-S 51255-1 50-1545 SITE NAME AND COMPANY ADDRESS

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD 79023 oi Z

TEST INSTRUCTIONS & COMMENTS Time: 1635 Page 2 of 2 က် りた HELINQUISHED BY: Printed Nation *Added 1927 rinted Name I'me: Time: **ANALYSIS REQUESTED** AETL JOB No. 786 82 RELINGUISHED BY RECEIVED BY 4 rinted Name: Printed Name Signature: Date; Prince Nation 2017/11/10 Midal Z msog 200 * Soot V RELINQUISHED BY SAMPLER: PRES. \$. 7. Signature: RECEIVED BY: DAIS HELIE Patelle Cared Printed Name: PHONE ALTHOS337 PROJECT # 60430 CONTAINER NUMBER/SIZE PROJECT MANAGER CHALL Steve American ☐ 2 DAYS ☐ 3 DAYS SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX FAX ₽ 0 wake PROPERLY COOLED Y JN / NA Š SAMPLES INTACT / Y/M / NA SAME DAY NEXT DAY Town & Country to 9440 TIME 260 8436 0940 101 66.50 0932 097.5 SE Sign 多天 TURN AROUND TIME Ruad NISI JOJ DYPV Road DATE Dypr Ana, C/t RUSH 7868 2. A. 78682023 78682.24 28682.2 LAB ID African das RECEIVED IN GOOD COND Y/N TOTAL NUMBER OF CONTAINERS Santa 日 CUSTODY SEALS Y /N /NA COMPANY ADDRESS FIS-10195-6 58-151-36 511-151-6 SAMPLE ID 50-150-8 51-151-5 KI NORMAL SR_150-5' 50-152-8 59-151-3 Se-151-Sr-151-15 SR-151-1 PROJECT NAME SITE NAME COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

JIM LIN

From:

Cavers, Chris [Chris.Cavers@aecom.com]

Sent:

Tuesday, October 27, 2015 7:42 AM

To:

JIM LIN Foes, David

Cc: Subject:

RE: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA"

Jim, please run the following archive samples on standard turnaround:

SB-150-5

SB-151-5

SB-152-5

SB-154-5

Depending on those results, we may request additional archive samples be analyzed.

Thanks,

Chris

From: JIM LIN [mailto:jiml@aetlab.com]
Sent: Monday, October 26, 2015 5:42 PM

To: Cavers, Chris **Cc:** Foes, David

Subject: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA"

Dear Chris,

Herewith please find EDD & PDF of results of analysis from project ID 60430750 "ITT Dyer Road, Santa Ana, CA"

AETL Job No: 78682

Thank you.

Should you have additional question, please feel free to contact us.

Jim Lin Operations Manager AETL 818-845-8200

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60430750

Date Received 10/15/2015
Date Reported 10/29/2015

Job Number	Order Date	Client
78821	10/27/2015	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 4 samples with the following specification on 10/27/2015.

Lab II	D Sample ID	Sample Date	Matrix	Quantit	y Of Containers
78821.01	SB-154-5	10/15/2015	Soil		1
78821.02	SB-152-5	10/15/2015	Soil		1
78821.03	SB-150-5	10/15/2015	Soil		1
78821.04	SB-151-5	10/15/2015	Soil		1
Me	thod ^ Submethod	Req Da	ate Priority	TAT Un	its
(80	82)	11/03/20	015 2	Normal 119	′Κ σ

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Reymana
Checked By:	Approved By:	J

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78821 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB1

		~			
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			10/29/2015		
Preparation Method			3550B		
Date Analyzed			10/29/2015		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		92.2		
Tetrachloro-m-xylene	30-150		75.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

l	AETL Job Number	Submitted	Client
	78821	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB1

		QO Daton i	10. 102913WIDT		
Our Lab I.D.			78821.01		
Client Sample I.D.		SB-154-5			
Date Sampled		10/15/2015			
Date Prepared			10/29/2015		
Preparation Method			3550B		
Date Analyzed			10/29/2015		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	1,110		
Aroclor-1254 (PCB-1254)	50	100	367		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		
Our Lab I.D.			78821.01		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		107		
Tetrachloro-m-xylene	30-150		104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

ı	AETL Job Number	Submitted	Client
	78821	10/15/2015	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB1

		QC Datch No	D: 102915WID1			
Our Lab I.D.			78821.02	78821.03	78821.04	
Client Sample I.D.			SB-152-5	SB-150-5	SB-151-5	
Date Sampled		10/15/2015	10/15/2015	10/15/2015		
Date Prepared	Date Prepared			10/29/2015	10/29/2015	
Preparation Method			3550B	3550B	3550B	
Date Analyzed			10/29/2015	10/29/2015	10/29/2015	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	237	11,700	1,890	
Aroclor-1254 (PCB-1254)	25.0	50.0	84.3	2,580	376	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			78821.02	78821.03	78821.04	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		110	119	96.6	
Tetrachloro-m-xylene	30-150		108	116	94.8	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78821 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB1; Dup or Spiked Sample: 78830.06; LCS: Clean Sand; QC Prepared: 10/29/2015; QC Analyzed: 10/29/2015; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	525	105	500	539	108	2.82	50-150	<20
Aroclor-1260 (PCB-1260)	86.8	500	674	117	500	678	118	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	53.1	106	50.0	57.8	116	9.43	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	52.0	104	50.0	53.5	107	2.88	30-150	<20

QC Batch No: 102915MB1; Dup or Spiked Sample: 78830.06; LCS: Clean Sand; QC Prepared: 10/29/2015; QC Analyzed: 10/29/2015; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	431	86.2	500	448	89.6	3.87	50-150	<20	
Aroclor-1260 (PCB-1260)	500	444	88.8	500	448	89.6	<1	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	42.2	84.4	50.0	47.4	94.8	12.3	30-150	<20	
Tetrachloro-m-xylene	50.0	45.1	90.2	50.0	47.0	94.0	4.21	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 3

Date Received 10/15/2015
Date Reported 11/05/2015

Job Number	Order Date	Client
78876	10/29/2015	AECOM

Project ID: 60430750

Project Name: ITT Dyer Road Site: ITT Dyer Road

Santa Ana, CA

Enclosed please find results of analyses of 3 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

American Environmental Testing	Invironm	ental Tes		Laboratory Inc.	Inc.			
2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com	iomi Street, Burbs (818) 845-8200	uk, CA 91504 • • Fax: (818) 845	• DOHS NO:	1541, LACSD No aetlab.com): 18101 :C	1887	7887	Nº 94602
COMPANY AECOM		ОНО	PHOJECT MANAGER	Chris Caver	3	AETL JOB No.7	18682	Page Of
ESS	999 Town & Country	RL	PHONE	PHONE 9444633637		ANALY	ANALYSIS REQUESTED	TEST INSTRUCTIONS & COMMENTS
PROJECT NAME THE DAP	Road		PROJEC	PROJECT # 60430 PS		505 305 305 305 305		7 . 90 . 130
SITE NAME THE	Dyer Rout		# 0		·			SERVIN TOR
RESS SUNTO								
SAMPLE ID LAB ID	DATE	TIME	MATRIX	CONTAINER NUMBER/SIZE	PRES.	2014 2014 2014		* Add 1927
18452-88-153-	10/15/18	B755	Asphal+	Sleeve	Nove	×		78682.01
\$154-0.05)	0759				×		78682.02
58.65 -0.03		0,203				*		78682.03
S3-152-0.05		6801				×		10.28786
33-151-00		22	X			ン		78682.05
. S.R. 1547		7,0%0	Si			X		78622.06
SB-154-3		287				イ		78682.07
SB-1545 /8881	100	0825				*		7468 2.08
\$-h5h-45		0358				v **	18816-01	-78682,09
		0834				X		78682,10
\$ \$2-Q-2						X		4
50-155-17		833				Ŋ		78682.11
_						እ		R
\$ 78+25 -\$		08%		•		*		78682,12
1 SB-159-3-4	A	0821	A			イ		78682.13
РТ	- TO BE FILLED BY L	100	ABORATORY		RELINGUISHED BY SAMPLER:	÷	RELINQUISHED BY:	2. RELINGUISHED BY: 3.
TOTAL NUMBER OF CONTAINERS	/3 PROPER	PROPERLY COOLED Y	N/NA	Signs	Signature: 8 x		Signature:	Signature: Q./L
CUSTODY SEALS Y (N) NA	SAMPLE	SAMPLES INTACT YAY	MY NA	Printe	Printed Name: ACAV	25	Printed Name:	Prince Variety
RECEIVED IN GOOD COND (Y)/ N	SAMPLE	SAMPLES ACCEPTED (Y	NA	Date	Date: Inthe	Time: 13.00	Date:	Date: 1674
TURN AROUND TIME	۵	DATA DELIVERABLE R	ABLE REOI	EQUIRED REC	EIVED BY:	+	RECEIVED BY:	IVED BY RATORY:
NORMAL RUSH SA	SAME DAY	HARD COPY	ļā.	Signs	Signature:		Signature:	Signature:
]]		GEOTRACKER (GLOBAL ID)	SBAL ID)	S and	Printed Namily	4471.00	od Name:	Printed Name: 17-190.
1 1	AYS 🗆 O	IHEH (PLEASE SP	ECIFY)	Date	الدراد	Time: (750 o	Date: Time:	PO115/15 Time: 1635
DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator	ry, CANARY - La	boratory, PINK	- Project/Acc	ount Manager, Y	ELLOW - Sar	npler/Orlginator		

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY PECOND Nº 79023 18821 AETL JOB NO. 78682

TEST INSTRUCTIONS & COMMENTS Time: 1635 Page 2 of 2 ന് HELINQUISHED BY Substantia Substantia *Added 1927 Date:)

10 | \(\frac{1}{2} \) | \(\frac{1}{2} \) | RECEIVED BY
LABORATORY; 02 0 I'me: ö ANALYSIS REQUESTED RELINQUISHED BY: RECEIVED BY: Printed Name rinted Name Signature MINDIA Fritted Nation Polylland \$555 G Stad Jany hisog * RELINQUISHED BY SAMPLER: PRES. 7 Palletic RECEIVED BY: Cares Printed Name: PHONE ALTHORS PROJECT # 60430 CONTAINER NUMBER/SIZE r. Y. Steere PROJECT MANAGER (Amhan ☐ 2 DAYS ☐ 3 DAYS SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX FAX PO# となるで PROPERLY COOLED Y // N / NA S SAMPLES INTACT (YJA) / NA SAMPLES ACCEPTED V/N SAME DAY NEXT DAY agg Town & Country to 9440 TIME 260 09450 8476 tois 8220 659 0932 25 Sign 8 **TURN AROUND TIME** Drer Ruad DISIK DYPV ROAD DATE Ana, CA RUSH 5 LAB ID AECON 78682 TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND YIN Sanda 日 CUSTODY SEALS Y /N / NA COMPANY ADDRESS FIS-101915-0 58-151-36 51-151-6 SAMPLE ID 50-150-8 513-150-5 A NORMAL SR-150-5' 50-152-8 5131-151-3 Sr-12-5 913-121-11 PROJECT NAME 50:151-SITE NAME AND ADDRESS COMPANY

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

JIM LIN

From:

Cavers, Chris [Chris.Cavers@aecom.com]

Sent:

Thursday, October 29, 2015 5:34 PM

To:

JIM LIN Foes, David

Cc: Subject:

RE: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA"

Jim,

Thank you very much for getting us the results so quickly.

Please run the following archive samples (this will be the last round of running archive samples):

SB-150-8

SB-151-8

SB-154-8

Extraction will be by 3550B. Please run these on standard turnaround.

Thanks,

Chris

From: JIM LIN [mailto:jiml@aetlab.com] Sent: Thursday, October 29, 2015 3:53 PM

To: Cavers, Chris Cc: Foes, David

Subject: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA"

Dear Chris,

Herewith please find EDD & PDF of results of analysis from project ID 60430750 "ITT Dyer Road, Santa Ana, CA"

AETL Job No: 78821 (holding time will be up today, will you like us to add anymore sample for extraction & analysis?)

Thank you.

Should you have additional question, please feel free to contact us.

Jim Lin **Operations Manager AETL** 818-845-8200

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60430750

Date Received 10/15/2015
Date Reported 11/05/2015

Job Number	Order Date	Client
78876	10/29/2015	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 3 samples with the following specification on 10/29/2015.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Container
78876.01	SB-154-8'	10/15/2015	Soil	1
78876.02	SB-150-8'	10/15/2015	Soil	1
78876.03	SB-151-8'	10/15/2015	Soil	1
Motho	d ^ Submethed	Peg D:	ate Priorit	37 TAT 11-1-1-

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082)	11/05/2015	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Reymana
Checked By:	Approved By:	J

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78876 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB2

		QC Batch N	o: 102915MB2				
Our Lab I.D.			Method Blank	78876.01	78876.02	78876.03	
Client Sample I.D.				SB-154-8'	SB-150-8'	SB-151-8'	
Date Sampled				10/15/2015	10/15/2015	10/15/2015	
Date Prepared			10/29/2015	10/29/2015	10/29/2015	10/29/2015	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			11/02/2015	11/02/2015	11/02/2015	11/02/2015	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	2,570	6,940	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			Method Blank	78876.01	78876.02	78876.03	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		99.2	121	134	91.6	
Tetrachloro-m-xylene	30-150		92.4	116	121	93.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60430750

Project Name: ITT Dyer Road

Site

ITT Dyer Road Santa Ana, CA

AETL Job Number Submitted Client
78876 10/15/2015 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 102915MB2; Dup or Spiked Sample: 78852.07; LCS: Clean Sand; QC Prepared: 10/29/2015; QC Analyzed: 11/02/2015; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	476	95.2	500	557	111	15.3	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	520	104	500	636	127	19.9	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	49.7	99.4	50.0	60.7	121	21.7	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	55.1	110	50.0	58.6	117	6.36	30-150	<20

QC Batch No: 102915MB2; Dup or Spiked Sample: 78852.07; LCS: Clean Sand; QC Prepared: 10/29/2015; QC Analyzed: 11/02/2015; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	428	85.6	500	442	88.4	3.22	50-150	<20	
Aroclor-1260 (PCB-1260)	500	441	88.2	500	465	93.0	5.30	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	43.5	87.0	50.0	46.1	92.2	5.98	30-150	<20	
Tetrachloro-m-xylene	50.0	43.0	86.0	50.0	45.2	90.4	5.12	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 21

Date Received 03/10/2016
Date Reported 03/21/2016

Job Number	Order Date	Client
80592	03/10/2016	AECOM

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site: 660 E Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 13 solid and 8 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96251 ÿ

80592

AETL JOB No.

PROJECT MANAGER
Chys Mytys
PHONE 7.14 567 7-433

FAX

COMPANY ADDRESS 994 TOWN & COUNTY

AFCOM

COMPANY

Dyer Rual

九十十

ITT Our Road

SITE NAME

3643C

PROJECT#

Page

TEST INSTRUCTIONS & COMMENTS ANALYSIS REQUESTED Archive

2839

PRES.

CONTAINER NUMBER/SIZE

MATRIX

IME

DATE

LAB ID

SAMPLE ID

5

Ana

ganta

ROAZ

Dya

W

999

ADDRESS AND

0

J. One

1- 452 Sar

0750 Concrete

3/10/16

SR-116.03 80592.01 5r-16-0.05/805/22.02

4 mago

0150

Sterne Sleen

501

1080

80592.05

2-191-25

Corrie

6751

80592.03 80592004

52-161-025a

0756

1208

0202 က် RELINQUISHED BY: LABORATORY: 2/ (a/16 Time: ECEIVED BY: rinted Name: XX X Churd 300/ SAMPLER Printed Name tar Sleve The Sleen 33754 Sleere Sleeve 5 195 しなり 3 DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY As Phall Concrete Asoha 11-Aspha) Y Asolalt 50, Ś S S Y/N/NA SAMPLES INTACT (Y/ N)/ NA SAMPLES ACCEPTED (Y/M) 5180 Ober 08CO 0837 0836 2240 0837 0894 020 92%0 PROPERLY COOLED(80892.06 80592.08 80592 -09 80592-10 Salbo -0.050 80592-01 80592-13 5B-163-0.05m 8059214 80592-1 80592.1 **TURN AROUND TIME** RECEIVED IN GOOD COND. (Y JN TOTAL NUMBER OF CONTAINERS CUSTODY SEALS Y/N /NA 50-24-515 SR-160-0.05 SB-164-10 SB-163-0.05 S-191-US 8-191-25 SR-160-1 58-160-3

Signature

012°

me:

Time: 1460

1-516.00

O

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY)

HARD COPY PDF

SAME DAY
NEXT DAY
2 DAYS
3 DAYS

RUSH

NORMAL

rinted Name

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

Nº 96247

TEST INSTRUCTIONS & COMMENTS 20/20 က် Page 2 of 5 SIENCY RELINQUISHED BY: ABORATORY 10 inted Nar rinted Ma Time: Time: ANALYSIS REQUESTED AETL JOB No. \$0592 RECEIVED BY: rinted Name rinted Name Time: 72 21/4214 なる。と対 X XX X X Palse 32 40 C 7808 3/10/16 RELINQUISHED BY PRES PROJECT MANAGER CAN'S CANIA SAMPLER PROJECT # GOLY SKS NUMBER/SIZE 経がより CONTAINER プスプスプ かがか Steen Sleeve Sleve Sieen Sleove 5a~ S1000 Sleen Sloeve Sloene 200 DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY うなのが PHONE ASSES T (Jacks MATRIX Concrete Covere FAX Ŝ 73 200 50,5 S 500 R 3 3 GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y/N/NA SAMPLES INTACT (Y/N / NA SAMPLES ACCEPTED (Y/)N 944 Tom & County Rd, Orange 8460 2750 04 40 27,50 OC be 250 0680 TIME DXSO 040 2760 **8** 河 1100 2245 2160 FRIET RY, SHINTIFFE HARD COPY PDF TH OUR RS DATE 3/101/8 SAME DAY

NEXT DAY

2 DAYS

3 DAYS ITTRE RI 5B-162-10 80592.30 80592.25 80592.22 Sr-162-8 80592.29 80592. LAB ID 6-162-03080592 80592. -162-0380592. 80592 **FURN AROUND TIME** 56505 AFROM 56.58 16.5 80592 RECEIVED IN GOOD COND √ Y N TOTAL NUMBER OF CONTAINERS RUSH CUSTODY SEALS Y //N / NA S SR-17-00K SR-11-0-8 SR-173-00 163-25 SB-160-10 SR. 162-5 COMPANY ADDRESS SR-160-8 2-491-85 SAMPLE ID 28-162-NORMAL NORMAL PROJECT NAME 56-163-1 SITE NAME COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 601488883.0-4

Date Received 03/10/2016

Date Reported 03/21/2016

Job Number	Order Date	Client
80592	03/10/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 30 samples with the following specification on 03/10/2016.

Lab ID	Sample ID	Sample Date	Matri	x		Quantity Of	Containers
80592.04	SB-161-1'	03/10/2016	Soil			1	
80592.05	SB-161-3'	03/10/2016	Soil			1	
80592.09	SB-160-1'	03/10/2016	Soil			1	
80592.10	SB-160-3'	03/10/2016	Soil			1	
80592.16	SB-163-1'	03/10/2016	Soil			1	
80592.18	SB-163-2.5'	03/10/2016	Soil			1	
80592.24	SB-162-1'	03/10/2016	Soil			1	
80592.26	SB-162-3'	03/10/2016	Soil			1	
Method	^ Submethod	Req 1	Date	Priority	TAT	Units	
(8082)		03/17/	/2016	2	Normal	ug/Kg	
80592.11	SB-161-5'	03/10/2016	Soil			1	
80592.12	SB-161-8'	03/10/2016	Soil			1	
80592.15	SB-161-10'	03/10/2016	Soil			1	
80592.21	SB-160-5'	03/10/2016	Soil			1	
80592.22	SB-160-8'	03/10/2016	Soil			1	
80592.23	SB-160-10'	03/10/2016	Soil			1	
80592.28	SB-162-5'	03/10/2016	Soil			1	
80592.29	SB-162-8'	03/10/2016	Soil			1	
80592.30	SB-162-10'	03/10/2016	Soil			1	
Method	^ Submethod	Req 1	Date	Priority	TAT	Units	
ARCHIV	'E	03/17/	/2016	2	Normal		
Lab ID	Sample ID	Sample Date	Matri			Quantity Of	Containers
80592.01	SB-176-0.05'	03/10/2016	Solid			1	
80592.02	SB-161-0.05'	03/10/2016	Solid			1	
80592.03	SB-161-0.05'a	03/10/2016	Solid	l		1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 601488883.0-4
Date Received 03/10/2016
Date Reported 03/21/2016

Job Number	Order Date	Client
80592	03/10/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

80592.06	SB-160-0.05'	03/10/2016	Solid	1
80592.07	SB-160-0.05'a	03/10/2016	Solid	1
80592.08	SB-175-0.05'	03/10/2016	Solid	1
80592.13	SB-163-0.05'	03/10/2016	Solid	1
80592.14	SB-163-0.05'a	03/10/2016	Solid	1
80592.17	SB-174-0.05'	03/10/2016	Solid	1
80592.19	SB-162-0.05'	03/10/2016	Solid	1
80592.20	SB-162-0.05'a	03/10/2016	Solid	1
80592.25	SB-172-0.05'	03/10/2016	Solid	1
80592.27	SB-173-0.05''	03/10/2016	Solid	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082)	03/17/2016	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site
660 E Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-2

Our Lab I.D.			Method Blank	80592.01	80592.02	
Client Sample I.D.				SB-176-0.05'	SB-161-0.05'	
Date Sampled				03/10/2016	03/10/2016	
Date Prepared			03/15/2016	03/15/2016	03/15/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			03/15/2016	03/15/2016	03/15/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	2,380	91.7	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	1,030	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			Method Blank	80592.01	80592.02	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		93.9	88.9	87.4	
Tetrachloro-m-xylene	30-150		109	100	117	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-2

Our Lab I.D.			80592.03		
Client Sample I.D.			SB-161-0.05'a		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	250	500	ND		
Aroclor-1221 (PCB-1221)	250	500	ND		
Aroclor-1232 (PCB-1232)	250	500	ND		
Aroclor-1242 (PCB-1242)	250	500	ND		
Aroclor-1248 (PCB-1248)	250	500	ND		
Aroclor-1254 (PCB-1254)	250	500	ND		
Aroclor-1260 (PCB-1260)	250	500	ND		
Aroclor-1262 (PCB-1262)	250	500	ND		
Aroclor-1268 (PCB-1268)	250	500	ND		

Comment(s):

80592.03: Analyzed under dilution due to matrix interference

Our Lab I.D.		80592.03		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	95.6		
Tetrachloro-m-xylene	30-150	98.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3

Our Lab I.D.			Method Blank	80592.04	80592.05	
Client Sample I.D.				SB-161-1'	SB-161-3'	
Date Sampled				03/10/2016	03/10/2016	
Date Prepared			03/15/2016	03/15/2016	03/15/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			03/15/2016	03/15/2016	03/15/2016	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			Method Blank	80592.04	80592.05	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		69.6	77.6	76.2	
Tetrachloro-m-xylene	30-150		116	142	105	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site
660 E Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-2

		QC Datch	NO: 031516-2		
Our Lab I.D.			80592.06		
Client Sample I.D.			SB-160-0.05'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	210		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.06		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		101		
Tetrachloro-m-xylene	30-150		90.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment 999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page:

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

AETL Job Number	Submitted	Client
80592	03/10/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-2

Our Lab I.D.			80592.07		
Client Sample I.D.			SB-160-0.05'a		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	250	500	ND		
Aroclor-1221 (PCB-1221)	250	500	ND		
Aroclor-1232 (PCB-1232)	250	500	ND		
Aroclor-1242 (PCB-1242)	250	500	ND		
Aroclor-1248 (PCB-1248)	250	500	ND		
Aroclor-1254 (PCB-1254)	250	500	ND		
Aroclor-1260 (PCB-1260)	250	500	ND		
Aroclor-1262 (PCB-1262)	250	500	ND		
Aroclor-1268 (PCB-1268)	250	500	ND		

Comment(s):

80592.07: Analyzed under dilution due to matrix interference

Our Lab I.D.		80592.07		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	92.8		
Tetrachloro-m-xylene	30-150	111		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3B/031516-3b

Our Lab I.D.			Method Blank	80592.08		
Client Sample I.D.				SB-175-0.05'		
Date Sampled				03/10/2016		
Date Prepared			03/15/2016	03/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			03/15/2016	03/15/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	5,970		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	2,820		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			Method Blank	80592.08		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		69.6	100		
Tetrachloro-m-xylene	30-150		116	125		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3

		QO Daton	140. 031310-3			
Our Lab I.D.			80592.09	80592.10		
Client Sample I.D.			SB-160-1'	SB-160-3'		
Date Sampled			03/10/2016	03/10/2016		
Date Prepared			03/15/2016	03/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			03/15/2016	03/15/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	337	52.6		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			80592.09	80592.10		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		82.3	90.0		
Tetrachloro-m-xylene	30-150		122	142		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Attn:

Page:

Site

AECOM Environment 999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Chris Cavers

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-2

		80592.13				
		SB-163-0.05'				
		03/10/2016				
		03/15/2016				
		3540C				
		03/15/2016				
		Solid				
		ug/Kg				
		10				
MDL	PQL	Results				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
	250 250 250 250 250 250 250 250	250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500	SB-163-0.05' 03/10/2016 03/15/2016 3540C 03/15/2016 Solid ug/Kg 10 Results 250 500 ND 250 500 TD 250	SB-163-0.05' 03/10/2016 03/15/2016 3540C 03/15/2016 Solid ug/Kg 10	SB-163-0.05' 03/10/2016 03/15/2016 3540C 03/15/2016 Solid ug/Kg 10	SB-163-0.05'

Comment(s):

80592.13: Analyzed under dilution due to matrix interference

Our Lab I.D.		80592.13		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	127		
Tetrachloro-m-xylene	30-150	117		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Matrix

Dilution Factor

Aroclor-1016 (PCB-1016)

Aroclor-1221 (PCB-1221)

Aroclor-1232 (PCB-1232)

Aroclor-1242 (PCB-1242)

Aroclor-1248 (PCB-1248)

Aroclor-1254 (PCB-1254)

Aroclor-1260 (PCB-1260)

Aroclor-1262 (PCB-1262)

Aroclor-1268 (PCB-1268)

Our Lab I.D.

Surrogates

Decachlorobiphenyl

Tetrachloro-m-xylene

Analytes

Units

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

Solid

ug/Kg

Results

ND

ND

ND

ND

ND

ND

ND

80592.14

% Rec.

126

146

956

876

10

 QC Batch No: 031516-3B/031516-3b

 Our Lab I.D.
 80592.14
 SB-163-0.05'a
 <th

PQL

500

500

500

500

500

500

500

500

500

MDL

250

250

250

250

250

250

250

250

250

%Rec.Limit

30-150

30-150

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number	Submitted	Client
80592	03/10/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3

Our Lab I.D.			80592.16		
Client Sample I.D.			SB-163-1'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	41.9J		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.16		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		75.0		
Tetrachloro-m-xylene	30-150		133		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 12

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3B/031516-3b

Our Lab I.D.			80592.17		
Client Sample I.D.			SB-174-0.05'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	997		
Aroclor-1254 (PCB-1254)	25.0	50.0	291		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.17		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		73.6		
Tetrachloro-m-xylene	30-150		94.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3

		QC Datch	NO: 031516-3		
Our Lab I.D.			80592.18		
Client Sample I.D.			SB-163-2.5'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	67.5J		
Aroclor-1254 (PCB-1254)	50	100	ND		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		
Our Lab I.D.			80592.18		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		85.4		
Tetrachloro-m-xylene	30-150		116		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **14**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3B/031516-3b

Our Lab I.D.			80592.19	80592.20		
Client Sample I.D.			SB-162-0.05'	SB-162-0.05'a		
Date Sampled			03/10/2016	03/10/2016		
Date Prepared			03/15/2016	03/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			03/15/2016	03/15/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	125	250	ND	ND		
Aroclor-1221 (PCB-1221)	125	250	ND	ND		
Aroclor-1232 (PCB-1232)	125	250	ND	ND		
Aroclor-1242 (PCB-1242)	125	250	ND	ND		
Aroclor-1248 (PCB-1248)	125	250	189Ј	325		
Aroclor-1254 (PCB-1254)	125	250	222J	380		
Aroclor-1260 (PCB-1260)	125	250	ND	ND		
Aroclor-1262 (PCB-1262)	125	250	ND	ND		
Aroclor-1268 (PCB-1268)	125	250	ND	ND		
Our Lab I.D.			80592.19	80592.20		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		82.5	86.0		
Tetrachloro-m-xylene	30-150		113	96.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

660 E Dyer Road Santa Ana, CA 92705

Orange, CA 92868-4713

999 W. Town and Country Road

Telephone: (714)973-9740 Attn: Chris Cavers Page: 15

601488883.0-4

Project ID: Project Name: ITT Dyer Road AETL Job Number Submitted Client 80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3

	QU Duton					
		80592.24				
		SB-162-1'				
		03/10/2016				
Date Prepared		03/15/2016				
Preparation Method		3540C				
		03/15/2016				
		Soil				
		ug/Kg				
		1				
MDL	PQL	Results				
25.0	50.0	ND				
25.0	50.0	ND				
25.0	50.0	ND				
25.0	50.0	ND				
25.0	50.0	113				
25.0	50.0	59.0				
25.0	50.0	ND				
25.0	50.0	ND				
25.0	50.0	ND				
		80592.24				
%Rec.Limit		% Rec.				
30-150		78.8				
30-150		123				
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30-150	MDL PQL 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0	80592.24 SB-162-1' 03/10/2016 03/15/2016 3540C 03/15/2016 Soil ug/Kg 1 Results 25.0 50.0 ND 25.0 50.0 113 25.0 50.0 59.0 25.0 50.0 ND 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	80592.24 SB-162-1' 03/10/2016 03/15/2016 3540C 03/15/2016 Soil ug/Kg I	SB-162-1' 03/10/2016 03/15/2016 3540C 03/15/2016 Soil ug/Kg I	80592.24 SB-162-1' O3/10/2016 O3/15/2016 O3/15/

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **16**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3B/031516-3b

Our Lab I.D.			80592.25		
Client Sample I.D.			SB-172-0.05'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	24,500		
Aroclor-1254 (PCB-1254)	25.0	50.0	12,500		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.25		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		106		
Tetrachloro-m-xylene	30-150		119		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 17

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3

		QC Datch	NO: 031516-3		
Our Lab I.D.			80592.26		
Client Sample I.D.			SB-162-3'		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.26		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		85.2		
Tetrachloro-m-xylene	30-150		120		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 18

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031516-3B/031516-3b

Our Lab I.D.			80592.27		
Client Sample I.D.			SB-173-0.05"		
Date Sampled			03/10/2016		
Date Prepared			03/15/2016		
Preparation Method			3540C		
Date Analyzed	Date Analyzed		03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	29,200		
Aroclor-1254 (PCB-1254)	25.0	50.0	17,100		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80592.27		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		112		
Tetrachloro-m-xylene	30-150		106		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 19

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3; Dup or Spiked Sample: 80592.26; LCS: Clean Sand; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	650	130	500	620	124	4.7	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	595	119	500	600	120	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	44.4	88.8	50.0	44.5	89.0	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	74.0	148	50.0	73.5	147	<1	30-150	<20

QC Batch No: 031516-3; Dup or Spiked Sample: 80592.26; LCS: Clean Sand; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	417	83.4	500	355	71.0	16.1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	406	81.2	500	368	73.6	9.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	33.1	66.2	50.0	30.2	60.4	9.2	30-150	<20	
Tetrachloro-m-xylene	50.0	53.0	106	50.0	42.9	85.8	21.1	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **20**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

 AETL Job Number
 Submitted
 Client

 80592
 03/10/2016
 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-2; Dup or Spiked Sample: 80641.05; LCS: Blank; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	489	97.8	500	535	107	9.0	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	585	117	500	495	99.0	16.7	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	47.0	94.0	50.0	36.9	73.8	24.1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	52.0	104	50.0	43.5	87.0	17.8	30-150	<20

QC Batch No: 031516-2; Dup or Spiked Sample: 80641.05; LCS: Blank; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	505	101	500	498	99.6	1.4	50-150	<20	
Aroclor-1260 (PCB-1260)	500	535	107	500	510	102	4.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	44.2	88.4	50.0	41.0	81.9	7.6	30-150	<20	
Tetrachloro-m-xylene	50.0	68.0	136	50.0	64.0	128	6.1	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **21**

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80592 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031516-3B/031516-3b; Dup or Spiked Sample: 80592.26; LCS: Blank; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	650	130	500	620	124	4.7	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	595	119	500	600	120	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	44.4	88.8	50.0	44.5	89.0	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	74.0	148	50.0	73.5	147	<1	30-150	<20

QC Batch No: 031516-3B/031516-3b; Dup or Spiked Sample: 80592.26; LCS: Blank; QC Prepared: 03/15/2016; QC Analyzed: 03/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	417	83.4	500	355	71.0	16.1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	406	81.2	500	368	73.6	9.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	33.1	66.2	50.0	30.2	60.4	9.2	30-150	<20	
Tetrachloro-m-xylene	50.0	53.0	106	50.0	42.9	85.8	21.1	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 12

Date Received 03/10/2016
Date Reported 03/22/2016

Job Number	Order Date	Client
80593	03/10/2016	AECOM

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site: 660 E Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 8 solid, 8 soil and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

Nº 96248

TEST INSTRUCTIONS & COMMENTS rime: က Page inted Name. RELINQUISHED BY LABORATORY Archile Date: Time: 80593 ANALYSIS REQUESTED RECEIVED BY: rinted Name Signature: AETL JOB No. me: 1450 ÷ 77 X 59 भ 2808 X 2,10/10 PRES. PROJECT MANAGER CHINIS CHINEY SAMPLER CONTAINER NUMBER/SIZE Jegg L Seon Cleeve **公**8% Sloon 5u-Sloene 194 34 Nah Sleeve 707 700 500 N DATA DELIVERABLE REQUIRED PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY Concre CONCINE Coverete COMPRE Covere MATRIX Concrete FAX # Od 23.1 50.1 1.05 1105 S 3 Soil GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y) N / NA SAMPLES INTACT (Y/N/ NA SAMPLES ACCEPTED V/N 8455 120 55 Chol TIME 2007 <u>9</u> 3 1047 7501 50 503 HARD COPY 1220 3/101/5 3/101/2 DATE 1/10 3/10 \$ [0 SAME DAY
NEXT DAY
2 DAYS
3 DAYS SR-170-05 80593.06 80593.04 80593.09 80593.10 80693.05 80<93.01 80<93.09 56-158-10 80593.19 18-1813 180593.1 LAB ID COMPANY ADDRESS 513-158-8 80593. \$0593. TURN AROUND TIME RECEIVED IN GOOD COND(Y)N TOTAL NUMBER OF CONTAINERS RUSH CUSTODY SEALS Y (N) NA 名。こっ名 5R-169-00 157-003 SB-159-0.05 -158-1 518-158-5 B- 158-3 48-151 SB-154-2 SAMPLE ID 56-12-J NORMAL PROJECT NAME SITE NAME ADDRESS AND

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96249 e Z

AETL JOB No. 80593

FAX

addillown & Country

AECOIN

COMPANY ADDRES

COMPANY

PROJECT NAME

SITE NAME

ADDRESS AND

ITT OYER AZ ITT Dier ROBE

TEST INSTRUCTIONS & COMMENTS က CIMIS RELINQUISHED BY: ANALYSIS REQUESTED Printed Nam 瑟 なってがない X Y X 2808 RELINQUISHED BY Date: 3110/16 PRES. 714567 248 PROJECT # GOLFS SES CONTAINER NUMBER/SIZE PROJECT MANAGER COWOR Amber

Sloero

らなん

Concide

Sleeve

151 ス

180593

2B-154-5

58-167-005805

SACRE

SS

3/10/16 2/101/2

31:01/5

Sleeve

50,1

Sas

Corre

1124

3/10/10 3110116

712-156-05 80593.

MATRIX

TIME

DATE

LAB ID

SAMPLE ID

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY)

HARD COPY PDF

☐ SAME DAY
☐ NEXT DAY
☐ 2 DAYS
☐ 3 DAYS

RUSH

MORMAL

2020

Time

RECEIVED BY:

DATA DELIVERABLE REQUIRED

FURN AROUND TIME

RECEIVED IN GOOD COND Y //N

TOTAL NUMBER OF CONTAINERS

CUSTODY SEALS Y (N) NA

SAMPLE RECEIPT - TO BE FILLED BY LABORATORY

PROPERLY COOLED Y/N/NA SAMPLES INTACT / Y/N / NA SAMPLES ACCEPTED Y N

the

13%

EB-031016-0180593.20

53-18-C

3

\$0593.7

53-151-6 58-156-8

513-157-8

80592

1256 अत्र

80593-0

5-8-18

7.X

77

1157 270

80593,

56-159-K

SR-159-8

50-157-5

Time: Mu

LABORATOR 101/10

2

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181

Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96250

TEST INSTRUCTIONS & COMMENTS က RELINQUISHED BY: FAETL JOB No. 80593 ÷ PCB'S None RELINQUISHED BY PRES. 5-0 SAMPLER CONTAINER NUMBER/SIZE 6CH 9893. Tot PROJECT # PROJECT MANAGER SAMPLE RECEIPT - TO BE FILLED BY LABORATORY 1240 CONCRETE MATRIX FAX # Od PROPERLY COOLED Y N / NA TIME san la 138 COMPANY ADDRESS 494 TOWN & COUNTY E DYON Road Road DATE

5B-165-0.05 80593.31

5B-16-0.05|80593

50.0+21-85

LAB ID

SAMPLE ID

TIT DYEN

SITE NAME

999

ADDRESS

Orange

PROJECT NAME

AFCOR

COMPANY

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY)

HARD COPY

SAME DAY 2 DAYS

RUSH

NORMAL X

TURN AROUND TIME

RECEIVED IN GOOD COND Y/N

CUSTODY SEALS Y/N/NA

7020 က်

LABORATORY

SI KNO

Time:

June 1400

Date: 710/16

DATA DELIVERABLE REQUIRED

SAMPLES INTACT Y/N NA SAMPLES ACCEPTED Y /N

TOTAL NUMBER OF CONTAINERS

rinted Name

785

ECEIVED BY

Signature

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 601488883.0-4

Date Received 03/10/2016

Date Reported 03/21/2016

Job Number	Order Date	Client
80593	03/10/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 33 samples with the following specification on 03/10/2016.

Sample ID	Sample Date	Matri	x		Quantity Of	Containers
EB-031016-d	03/10/2016	03/10/2016 Aqueous			1	
od ^ Submethod	Req I	Date	Priority	TAT	Units	
	03/17/2	2016	2	Normal	ug/L	
Sample ID	Sample Date		x		Quantity Of	Containers
SB-158-1'	03/10/2016				1	
SB-158-3'	03/10/2016	Soil			1	
SB-159-1'	03/10/2016	Soil			1	
SB-159-3'	03/10/2016	Soil			1	
SB-157-1'	03/10/2016	Soil			1	
SB-157-3'	03/10/2016	Soil			1	
SB-156-1'	03/10/2016	Soil			1	
SB-156-3'	03/10/2016	Soil			1	
od ^ Submethod	Req I	Date	Priority	TAT	Units	
		2016	2	Normal	ug/Kg	
SB-158-5'	03/10/2016	Soil			1	
SB-158-8'	03/10/2016	Soil			1	
SB-158-10'	03/10/2016	Soil			1	
SB-159-5'	03/10/2016	Soil			1	
SB-159-8'	03/10/2016	Soil			1	
SB-159-10'	03/10/2016	Soil			1	
SB-157-5'	03/10/2016	Soil			1	
SB-157-8'	03/10/2016	Soil			1	
SB-157-10'	03/10/2016	Soil			1	
SB-156-8'	03/10/2016	Soil			1	
SB-156-5'	03/10/2016	Soil			1	
	EB-031016-d od ^ Submethod Sample ID SB-158-1' SB-158-3' SB-159-1' SB-157-1' SB-157-3' SB-156-1' SB-156-3' od ^ Submethod SB-158-8' SB-158-8' SB-159-5' SB-159-8' SB-159-8' SB-157-5' SB-157-6' SB-157-8' SB-157-8' SB-157-10' SB-156-8'	EB-031016-d 03/10/2016 od ^ Submethod Req I	EB-031016-d 03/10/2016 Aqueo od ^ Submethod Req Date 03/17/2016 Sample ID Sample Date Matri SB-158-1' 03/10/2016 Soil SB-159-1' 03/10/2016 Soil SB-159-3' 03/10/2016 Soil SB-157-1' 03/10/2016 Soil SB-157-3' 03/10/2016 Soil SB-156-1' 03/10/2016 Soil SB-156-3' 03/10/2016 Soil SB-158-8' 03/10/2016 Soil SB-158-8' 03/10/2016 Soil SB-159-5' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-157-8' 03/10/2016 Soil	EB-031016-d 03/10/2016 Aqueous od * Submethod Req Date 03/17/2016 2 Sample ID Sample Date Matrix SB-158-1' 03/10/2016 Soil SB-158-3' 03/10/2016 Soil SB-159-3' 03/10/2016 Soil SB-157-1' 03/10/2016 Soil SB-157-3' 03/10/2016 Soil SB-156-1' 03/10/2016 Soil SB-156-3' 03/10/2016 Soil SB-158-8' 03/10/2016 Soil SB-158-8' 03/10/2016 Soil SB-158-10' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-10' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-159-8' 03/10/2016 Soil SB-157-5' 03/10/2016 Soil SB-157-5' 03/10/2016 Soil SB-157-5' 03/10/2016 Soil SB-157-8' 03/10/2016 Soil SB-157-8' 03/10/2016 Soil SB-157-8' 03/10/2016 Soil SB-157-8' 03/10/2016 Soil	EB-031016-d 03/10/2016 Aqueous od * Submethod Req Date Priority TAT	EB-031016-d 03/10/2016 Aqueous 1 1 od * Submethod Req Date Priority TAT Units 03/17/2016 2 Normal ug/L Sample ID Sample Date Matrix Quantity Of SB-158-1' 03/10/2016 Soil 1 SB-158-3' 03/10/2016 Soil 1 SB-159-3' 03/10/2016 Soil 1 SB-157-1' 03/10/2016 Soil 1 SB-157-3' 03/10/2016 Soil 1 SB-156-3' 03/10/2016 Soil 1 SB-156-3' 03/10/2016 Soil 1 SB-156-3' 03/10/2016 Soil 1 SB-158-5' 03/10/2016 Soil 1 SB-158-5' 03/10/2016 Soil 1 SB-158-8' 03/10/2016 Soil 1 SB-158-8' 03/10/2016 Soil 1 SB-159-5' 03/10/2016 Soil 1 SB-159-8' 03/10/2016 Soil 1 SB-159-8' 03/10/2016 Soil 1 SB-159-8' 03/10/2016 Soil 1 SB-157-5' 03/10/2016 Soil 1 SB-157-5' 03/10/2016 Soil 1 SB-157-5' 03/10/2016 Soil 1 SB-157-5' 03/10/2016 Soil 1 SB-157-8' 03/10/2016 Soil 1 SB-156-8' 03/10/2016 Soil 1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 601488883.0-4

Date Received 03/10/2016

Date Reported 03/21/2016

Job Number	Order Date	Client
80593	03/10/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

80593	3.29	SB-156-10'	03/10/2	016	Soil			1	
	Method	^ Submethod		Req	Date	Priority	TAT	Units	
	ARCHIV	Έ		03/17	7/2016	2	Normal		
La	ıb ID	Sample ID	Sample 1	Date	Matr:	x		Quantity Of	Containers
80593	3.01	SB-171-0.05'	03/10/2	016	Solid	l		1	
80593	3.02	SB-169-0.05'	03/10/2	016	Solid	l		1	
80593	3.06	SB-170-0.05'	03/10/2	016	Solid	l		1	
80593	3.18	SB-168-0.05'	03/10/2	016	Solid	l		1	
80593	3.20	SB-167-0.05'	03/10/2	016	Solid	l		1	
80593	3.31	SB-165-0.05'	03/10/2	016	Solid	l		1	
80593	3.32	SB-166-0.05'	03/10/2	016	Solid	l		1	
80593	3.33	SB-164-0.05'	03/10/2	016	Solid	l		1	
	Method	^ Submethod		Req	Date	Priority	TAT	Units	
	(8082)			03/17	7/2016	2	Normal	ug/Kg	
80593	3.03	SB-158-0.05'	03/10/2	016	Solid	l		1	
80593	3.07	SB-159-0.05'	03/10/2	016	Solid	l		1	
80593	3.10	SB-157-0.05'	03/10/2	016	Solid	l		1	
80593	3.16	SB-156-0.05'	03/10/2	016	Solid	l		1	
	Method	^ Submethod		Req	Date	Priority	TAT	Units	
	ARCHIV	E		03/17	7/2016	2	Normal		

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

660 E Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3B

QC Balcii NO. US 1410-SB									
Our Lab I.D.			Method Blank	80593.01	80593.02				
Client Sample I.D.				SB-171-0.05'	SB-169-0.05'				
Date Sampled				03/10/2016	03/10/2016				
Date Prepared			03/14/2016	03/14/2016	03/14/2016				
Preparation Method			3540C	3540C	3540C				
Date Analyzed			03/14/2016	03/15/2016	03/15/2016				
Matrix			Solid	Solid	Solid				
Units			ug/Kg	ug/Kg	ug/Kg				
Dilution Factor			1	1	1				
Analytes	MDL	PQL	Results	Results	Results				
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND				
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND				
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND				
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND				
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	23,600	23,800				
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	20,000	35,800				
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND				
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND				
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND				
Our Lab I.D.			Method Blank	80593.01	80593.02				
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.				
Decachlorobiphenyl	30-150		66.3	111	144				
Tetrachloro-m-xylene	30-150		118	136	97.0				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site 660 E Dyer

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031416-3A

Our Lab I.D.			Method Blank	80593.04	80593.05	
Client Sample I.D.				SB-158-1'	SB-158-3'	
Date Sampled	Date Sampled			03/10/2016	03/10/2016	
Date Prepared			03/14/2016	03/14/2016	03/14/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			03/14/2016	03/15/2016	03/15/2016	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	1,660	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			Method Blank	80593.04	80593.05	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		66.3	81.8	146	
Tetrachloro-m-xylene	30-150		118	126	134	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site 660 E Dyer Road

Santa Ana, CA 92705

AETL Job Number Submitted Client 80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3B

		QC Batch	NO: U31416-3B		
Our Lab I.D.			80593.06		
Client Sample I.D.			SB-170-0.05'		
Date Sampled			03/10/2016		
Date Prepared			03/14/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	24,900		
Aroclor-1254 (PCB-1254)	25.0	50.0	20,000		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80593.06		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		110		
Tetrachloro-m-xylene	30-150		104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Telephone: (714)973-9740 Attn: Chris Cavers

Orange, CA 92868-4713

Page: 5

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site 660 E Dve

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3A

		QU Buton .					
Our Lab I.D.			80593.08	80593.09	80593.11	80593.15	80593.17
Client Sample I.D.			SB-159-1'	SB-159-3'	SB-157-1'	SB-157-3'	SB-156-1'
Date Sampled			03/10/2016	03/10/2016	03/10/2016	03/10/2016	03/10/2016
Date Prepared			03/14/2016	03/14/2016	03/14/2016	03/14/2016	03/14/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			03/15/2016	03/15/2016	03/15/2016	03/15/2016	03/15/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	276	1,080	ND	882
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	179	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	81.1	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			80593.08	80593.09	80593.11	80593.15	80593.17
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		123	100	127	124	104
Tetrachloro-m-xylene	30-150		96.0	136	141	142	132

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road Orange, CA 92868-4713 660 E Dyer Road Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 601488883.0-4 Project Name: ITT Dyer Road AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3B

		QC Batch	NO: U31416-3B		
Our Lab I.D.			80593.18		
Client Sample I.D.			SB-168-0.05'		
Date Sampled			03/10/2016		
Date Prepared			03/14/2016		
Preparation Method			3540C		
Date Analyzed			03/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	12,800		
Aroclor-1254 (PCB-1254)	25.0	50.0	6,140		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			80593.18		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		0.0		
Tetrachloro-m-xylene	30-150		126		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site 660 E Dyer Road

Santa Ana, CA 92705

AETL Job Number Submitted Client 80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031416-3A

Our Lab I.D. 80593.19 Client Sample I.D. SB-156-3' Date Sampled 03/10/2016 03/14/2016 Date Prepared Preparation Method 3540C Date Analyzed 03/15/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes Results MDL **PQL** Aroclor-1016 (PCB-1016) 25.0 50.0 ND Aroclor-1221 (PCB-1221) 25.0 50.0 ND Aroclor-1232 (PCB-1232) 25.0 50.0 ND Aroclor-1242 (PCB-1242) 25.0 50.0 ND Aroclor-1248 (PCB-1248) 25.0 50.0 ND Aroclor-1254 (PCB-1254) 25.0 50.0 ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND Our Lab I.D. 80593.19 Surrogates %Rec.Limit % Rec. 30-150 Decachlorobiphenyl 126 Tetrachloro-m-xylene 30-150 119

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 601488883.0-4 Project Name: ITT Dyer Road 660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3B

QC Batch NO. 031410-3B									
Our Lab I.D.			80593.20	80593.31	80593.32	80593.33			
Client Sample I.D.			SB-167-0.05'	SB-165-0.05'	SB-166-0.05'	SB-164-0.05'			
Date Sampled			03/10/2016	03/10/2016	03/10/2016	03/10/2016			
Date Prepared			03/14/2016	03/14/2016	03/14/2016	03/14/2016			
Preparation Method			3540C	3540C	3540C	3540C			
Date Analyzed			03/15/2016	03/15/2016	03/15/2016	03/15/2016			
Matrix			Solid	Solid	Solid	Solid			
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg			
Dilution Factor			1	1	1	1			
Analytes	MDL	PQL	Results	Results	Results	Results			
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1248 (PCB-1248)	25.0	50.0	13,500	132,000	6,880	68,000			
Aroclor-1254 (PCB-1254)	25.0	50.0	16,500	96,500	10,700	34,800			
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND			
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	5,680	ND			
Our Lab I.D.			80593.20	80593.31	80593.32	80593.33			
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.			
Decachlorobiphenyl	30-150		101	76.0	132	100			
Tetrachloro-m-xylene	30-150		111	101	100	102			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site 660 E Dver

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 031416MB1

Our Lab I.D.			Method Blank	80593.30		
Client Sample I.D.				EB-031016-d		
Date Sampled	Date Sampled			03/10/2016		
Date Prepared			03/14/2016	03/14/2016		
Preparation Method			3510C	3510C		
Date Analyzed			03/15/2016	03/15/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	80593.30		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		117	115		
Tetrachloro-m-xylene	75-125		88.8	101		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416MB1; Dup or Spiked Sample: 0314; LCS: Clean Water; QC Prepared: 03/14/2016; QC Analyzed: 03/15/2016; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1260 (PCB-1260)	0.00	5.00	6.25	125	5.00	5.89	118	5.76	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	1.00	1.25	125	1.00	1.04	104	18.3	75-125	<20
Tetrachloro-m-xylene	0.00	1.00	1.15	115	1.00	1.13	113	1.74	75-125	<20

QC Batch No: 031416MB1; Dup or Spiked Sample: 0314; LCS: Clean Water; QC Prepared: 03/14/2016; QC Analyzed: 03/15/2016; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	6.10	122	75-125			
Surrogates							
Decachlorobiphenyl	1.00	1.25	125	75-125			
Tetrachloro-m-xylene	1.00	1.18	118	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3A; Dup or Spiked Sample: 80593.05; LCS: Clean Sand; QC Prepared: 03/14/2016; QC Analyzed: 03/14/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	590	118	500	580	116	1.7	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	605	121	500	645	129	6.4	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	50.5	101	50.0	50.0	100	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	67.5	135	50.0	70.5	141	4.3	30-150	<20

QC Batch No: 031416-3A; Dup or Spiked Sample: 80593.05; LCS: Clean Sand; QC Prepared: 03/14/2016; QC Analyzed: 03/14/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	410	82.0	500	462	92.4	11.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	484	96.8	500	530	106	9.1	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	40.8	81.6	50.0	40.3	80.6	1.2	30-150	<20	
Tetrachloro-m-xylene	50.0	63.5	127	50.0	66.0	132	3.9	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 12

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80593 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 031416-3B; Dup or Spiked Sample: 80593.05; LCS: Blank; QC Prepared: 03/14/2016; QC Analyzed: 03/14/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	590	118	500	580	116	1.7	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	605	121	500	645	129	6.4	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	50.5	101	50.0	50.0	100	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	67.5	135	50.0	70.5	141	4.3	30-150	<20

QC Batch No: 031416-3B; Dup or Spiked Sample: 80593.05; LCS: Blank; QC Prepared: 03/14/2016; QC Analyzed: 03/14/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	410	82.0	500	462	92.4	11.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	484	96.8	500	530	106	9.1	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	40.8	81.6	50.0	40.3	80.6	1.2	30-150	<20	
Tetrachloro-m-xylene	50.0	63.5	127	50.0	66.0	132	3.9	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 3

Date Received 03/10/2016
Date Reported 03/25/2016

Job Number	Order Date	Client
80821	03/22/2016	AECOM

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site: 660 E Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 2 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CUSTODY RECORD		Nº 96248
CHAIN OF	0000	18000

96248 일

TEST INSTRUCTIONS & COMMENTS Time: 707.0 က် 0 Pape Page _ RELINGUISHED BY: .02 Paris: 9/16 3/19/16 RECEIVED BY LABORATORY: * Ayla 3/22 Archite 80821 2 Time: Time: **ANALYSIS REQUESTED** RELINGUISHED BY RECEIVED BY: Printed Name rinted Name Signature: AETL JOB No. 789 CB3 Time: 1450 Archive X X 592 2.808 RELINGUISHED BY Date: 2,10/10 PRES. RECEIVED BY: Carer A SAMPLER: 9 Signature: Signature: CONTAINER NUMBER/SIZE PROJECT MANAGER Chry Cleor. Jeon S Cleare <u>7</u>888 Siborp Slower 200 Na. Sieere Sal N Š Nov John Sac DATA DELIVERABLE REGUIRED PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE OGSS CONTRE Corore Covarete COMER Course MATRIX Conore ₩ 0 0 FAX S 901 Ś 3 GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) 30, PROPERLY COOLED(Y) N / NA SAMPLES INTACT (Y) NA SAMPLES ACCEPTED V/N Chol 12.7 हिप्त <u>0</u> 3 35 TIME Sol 1030 1047 5201 3 HARD COPY PDF 3//01/75 122 3/101/5 DATE 2160 O 3/10 \$ | | | SAME DAY
INEXT DAY
2 DAYS
3 DAYS N-039 80593.06 0.5650% 500-171-0.55 5R-169-0-45 8059302 80593.05 28-157-3 180593. K 205650% 80×93.0 80<93.09 80593. LAB ID S 6-158-10 180593. COMPANY ADDRESS TURN AROUND TIME 92-150-0-05 1699. RECEIVED IN GOOD COND, Y N TOTAL NUMBER OF CONTAINERS F NORMAL | RUSH CUSTODY SEALS Y (N) NA 513-15G-0.0C - 58-8-851-215 0-158-5 スマージ JB-159-2 SAMPLE ID SR-181-PROJECT NAME SR-SITE NAME AND ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

JIM LIN

From:

Cavers, Chris [Chris.Cavers@aecom.com]

Sent:

Tuesday, March 22, 2016 1:52 PM

To:

JIM LIN

Subject:

RE: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA" 2 of 2

Jim,

Please analyze archive samples SB-157-0.5 and SB-158-0.5 for PCBs by EPA Method 8082, using the same extraction method as the others (3540C). Run these on standard turnaround.

Thanks,

Chris

From: JIM LIN [mailto:jiml@aetlab.com]
Sent: Tuesday, March 22, 2016 11:53 AM

To: Cavers, Chris **Cc:** Foes, David

Subject: EDD & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA" 2 of 2

Dear Chris,

Herewith please find EDD & PDF of results of analysis from project ID 60430750 "ITT Dyer Road, Santa Ana, CA"

AETL Job No: 80593

Thank you.

Should you have additional question, please feel free to contact us.

Jim Lin Operations Manager AETL 818-845-8200

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740
Attention: Chris Cavers

Project ID: 601488883.0-4
Date Received 03/10/2016
Date Reported 03/25/2016

Job Number	Order Date	Client
80821	03/22/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 2 samples with the following specification on 03/22/2016.

Lab ID	Sample ID	Sample Date	Matrix	Ç	Quantity Of Con	tainers
80821.01	SB-158-0.05'	03/10/2016	Solid		1	
80821.02	SB-157-0.05'	03/10/2016	Solid		1	
Metho	od ^ Submethod	Req Da	ate Priority	TAT	Units	
(8082)		03/29/2	016 2	Normal	119/Кд	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 601488883.0-4 Project Name: ITT Dyer Road Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80821 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 032216MB1

		QC Batch No	0: U32216WID1			
Our Lab I.D.			Method Blank	80821.01	80821.02	
Client Sample I.D.				SB-158-0.05'	SB-157-0.05'	
Date Sampled				03/10/2016	03/10/2016	
Date Prepared			03/22/2016	03/22/2016	03/22/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			03/23/2016	03/23/2016	03/23/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	98.7	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	79.3	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			Method Blank	80821.01	80821.02	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		140	133	148	
Tetrachloro-m-xylene	30-150		127	147	122	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 601488883.0-4
Project Name: ITT Dyer Road

Site

660 E Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
80821 03/10/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 032216MB1; Dup or Spiked Sample: 80713.44; LCS: Blank; QC Prepared: 03/22/2016; QC Analyzed: 03/23/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	338	67.6	500	346	69.2	2.34	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	442	88.4	500	460	92.0	3.99	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	70.4	141	50.0	67.3	135	4.26	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	71.7	143	50.0	68.6	137	4.20	30-150	<20

QC Batch No: 032216MB1; Dup or Spiked Sample: 80713.44; LCS: Blank; QC Prepared: 03/22/2016; QC Analyzed: 03/23/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	321	64.2	500	329	65.8	2.46	50-150	<20	
Aroclor-1260 (PCB-1260)	500	513	103	500	461	92.2	11.1	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	70.9	142	50.0	60.4	121	14.8	30-150	<20	
Tetrachloro-m-xylene	50.0	49.6	99.2	50.0	55.7	111	11.9	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 22

Date Received 04/14/2016
Date Reported 04/26/2016

Job Number	Order Date	Client
81153	04/14/2016	AECOM

Project ID: 60488883

Project Name: ITT Dyer Road Site: 660 Dyer Road

Santa Ana, CA 90705

Enclosed please find results of analyses of 17 solid, 15 soil and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

e Z

96318

TEST INSTRUCTIONS & COMMENTS Time: 1830 က် o method 3549C Use Extraction Page RELINQUISHED BY: ひんだん LABORATORY: 200 لكائك lime: Time: ANALYSIS REQUESTED 8/1/83 ECEIVED BY: rinted Name rinted Narr ignature Date: AETL JOB No. Time 1530 Archive X × × × X X X X Printed Name: On Jree 7808 PCBS X X RELINQUISHED BY PRES. SAMPLER: PHONE 714 S67 2400 CONTAINER NUMBER/SIZE PROJECT MANAGER PROJECT # 60488883 Sleeve 402 54 よっからのア Sleeno Sleene Sleeno Sleeve Sleon SLEEVE 407 401 L. B الم 404 7 DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY Contrar Connelle MATRIX Concrete. # Od CONCINE GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) 50. 50. PROPERLY COOLED // // NA SAMPLES INTACT (Y/ N/NA SAMPLES ACCEPTED Y N Shu X 25 2 TIME Ocho 130 医 9151 080e 847 3 Santa 153 説 HARD COPY PDF 999 Town & Country RE DATE Roal भ/नाक्त 0000 ITT Dyer Roud SAME DAY
NEXT DAY
2 DAYS
3 DAYS Dyer 81153.08 81153.06 8/1153.09 8/153.10 811<3.02 3.04 81153.03 81153.07 8/1/53.0 81153.0 LAB ID 81153-1 \$1153. 8/1/53-1 8//53 **FURN AROUND TIME** RECEIVED IN GOOD COND. (Y)N TOTAL NUMBER OF CONTAINERS RUSH 666 CUSTODY SEALS Y /N NA AECOM 58-119-0.05 SB-118-0.05 SR-177-0.05 SB-187-0.05 SB-177-10 COMPANY ADDRESS SR-171-8 58-17839 58-178-3 58-118-8 SAMPLE ID 58-171-3 SR-171-39 SR-INS 5B-173-5 NORMAL SB-178-PROJECT NAME SR-177-SITE NAME AND COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLÓW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96317

Country R3		((
Complete		Page (of [
Quarty R3 Fax U.S. St.	ANALYSIS REQUESTED	
Color Colo	7145612400	TEST INSTRUCTIONS & COMMENTS
Coco	Spanneg	2
San Her Pine	7	the extraction
Solution Date Time Matrix Container Pres. Solution	Svii.	Method 3450c
3.76 4414/16 1472 Sol Steve MBM 3.77 110 Sol Sol Steve X 3.20 125 Sol Steve X 3.21 133 Sol Steve X 3.22 133 Sol Steve X 3.22 133 Sol Steve X 3.22 15 133 Sol Steve X 3.22 15 133 Sol Steve X 3.22 15 133 Sol Sol Steve X 3.22 15 151 World World X 3.24 Sol Sol Steve X 3.25 151 World World X 3.26 151 NW NA Steve X 3.27 10 BE FILLED BY LABORATORY SAMPLER SAMPLES INTACT (V N NA SIGNALIE: DAN FOUR SIGNALIE: DATA DELIVER BLE REQUIRED SIGNATION SIGN	CONTAINER PRES.	
3.79 1100 50,1 544,01 54. × 3.91 5.01 5.01 × × × × × × × × ×	Soil Steave MBM	
3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27	Sleeve	2
3.20 3.21 3.22 3.22 3.22 13.33 5.01 13.35 5.01 13.36 3.22 13.37 3.22 13.37 3.22 13.37 3.22 13.37 3.22 13.37 3.22 13.37 3.22 13.37 3.22 15.14 15.14 15.14 15.14 15.11 15.14 15.11 15.	Steed San	
3.22 13.3 50,1 51egre	th.	
3.22 13.3 50,1 51egra 13.3 50,1 51egra	Steere	
3.22	Stepne	
3.24 Soji Slede X 3.25 Sil Wol X 3.26 Sil Wol X 3.26 Sil Wol X 3.27 Y Sovelle Wol X 3.27 Y Samples X 3.27 Y Samples X 3.27 Y N N N X 3.27 Y	Sleep	
3.27 3.26 151 15R 15R 15R 15R 15R 15R 15	the San	Acout Acobalt
3.26 15R 15R 15R 15R 15R 15R 15R 15	Sleen	
3.26 15PL		
3.27 PTO BE FILLED BY LABORATORY SAMPLER: SAMPLES INTACT (V/N/NA) SAMPLES INTACT (V/N/NA) SAMPLES ACCEPTED (Y/N/NA) SIGNATURE: SIGNATURE: DATA DELIVERABLE REQUIRED SIGNATURE: SIGN	X	
CONTROL CONT	2) Signature of the sig	
1033 Covered Parity Samples BY LABORATORY FRELINGUISHED BY SAMPLES Signature: Samples Interpretation Samples Samples Signature: Signa	*	
1033 Covered Paragraph Perinted Day LABORATORY PRELINGUISHED BY SAMPLER: Signature: Printed Name: Dan Steps Printed Name: Dan Steps Printed Day		
PT - TO BE FILLED BY LABORATORY SAMPLER: SAMPLER: SAMPLER: SAMPLER: SAMPLER: SAMPLER: SAMPLER: SAMPLER: DANAFELS SAMPLES ACCEPTED Printed Name: Danafel Printed Name: Danafel SAMPLES ACCEPTED PRINTED NAME	to the state of th	
Signature: S F SAMPLES INTACT (V/N/NA Printed Name: Dan/Neg SAMPLES ACCEPTED (Y/N/NA Printed Name: Dan/Neg ME DATA DELIVERABLE REQUIRED Signature: Si	RELINQUISHED BY SAMPLER:	RELINQUISHED BY: 3.
D TIME DATA DELIVERABLE REQUIRED Signature: HARD COPY HARD COPY HARD COPY GEOTRACKER (GLOBAL ID) Printed Name: Dany Time: Date Printed Name: Dany Name Printed Name: Dany Name Printed Name Printed Name: Dany Name Printed Name Pr	Signature:	Signature:
VD TIME DATA DELIVERABLE REQUIRED Signature: SIGNATURE: SAMPLES ACCEPTED(Y/N DATA DELIVERABLE REQUIRED Signature: Signa	Printed Name:	Printed Name:
AROUND TIME DATA DELIVERABLE REQUIRED Signature: RUSH SAME DAY PDF Printed DATA DELIVERABLE REQUIRED Signature: Printed DATA DELIVERABLE REQUIRED Signature:	Jane: 14/16 Time: 1530	Date/y/// Time: 835
RUSH SAME DAY HARD COPY Signature. Printed Days GEOTRACKER (GLOBAL ID)	D	RECEIVED BY LABORATORY: AETC 3.
D 2 DAYS GEOTRACKER (GLOBAL ID)	Signature:	Signature;
OTHER (PLEASE SPECIFY)	Printed Name: Printed Name: Dates Time: Dates Time:	Printed-Name.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/14/16 11/30

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96319 일

TEST INSTRUCTIONS & COMMENTS 1870 က် က Use Extraction Method RELINQUISHED BY: LABORATORY 35400 Time: ANALYSIS REQUESTED RECEIVED BY: rinted Name Signature: AETL JOB No. me:/530 Archive X × \times 1808 X X X rinted Name ELINQUISHED B PRES.) 1 1 1 (1 (1 SAMPLER: Date:// PROJECT # COUSSES NUMBER/SIZE CONTAINER Slowere 407 Sleeve Spene アのプ 14071 402 Seem 3 407 494 7071 ž PROJECT MANAGER アカカ なが DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY Surger S MATRIX # Od Congrete FAX 200 GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) R 2 So.\ PROPERLY COOLED Y //N / NA SAMPLES INTACT Y/N / NA SAMPLES ACCEPTED Y/N TIME 1407 <u>≥</u>b 0945 0101 1200 PHS 1355 3223 1235 125 ž BUZ C33 HARD COPY PDF (COUNTY 9/12/12 DATE \$ \$ \$ SAME DAY
NEXT DAY
2 DAYS
3 DAYS 999 Toun 4 3-38 50-191-0.0**5**18/1153-40 SR-193-0.058/1153-42 GG6 D49 81153.34 28.87118 53-36 Santa Ana, 8/1/53.28 811<3-3 SB-192-005 8/1/53-4 8/1/53-29 THON LAB ID **TURN AROUND TIME** · B-181-0,858/1/53. RECEIVED IN GOOD COND. Y/N TOTAL NUMBER OF CONTAINERS ACCOM RUSH 78 S13-40-0.08 8/15 CUSTODY SEALS Y/N/NA SB-183-0-05 SR-124-005 SR- 185-0.05 SR-16-005 SR-189-0.05 8-158-0.35 COMPANY ADDRESS SB-181-1 SAMPLE ID SB-185-1 Sn-181-7 SB-185-3 NORMAL PROJECT NAME SITE NAME ADDRESS COMPANY AND

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELL'OW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96320

o Z

TEST INSTRUCTIONS & COMMENTS 200 က် use extraction method Time: 18 Page Lof RELINQUISHED BY: LABORATORY 3540C Signature Time: ANALYSIS REQUESTED RECEIVED BY: inted Name rinted Name AETL JOB No. DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator .30 Michila X X 18.08 rinted Name: VANJ Fee Sgoy X RELINQUISHED B 20105 PRES SAMPLER: PHONE THE672400 Signature: PROJECT MANAGER Chys CONTYS CONTAINER NUMBER/SIZE Sleare Slear Slaeve 4 Sleave Sterre Sleens Sleave 11 9mb PROJECT# Sheene 5 Lear 力 なな 707 DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY CONCIDE Concrete MATRIX Convedo 1500 Concrete Towner Concrete ノチャイ 3 20,1 R 50.1 50.1 105 Soil GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y/N/NA 432 Sol SAMPLES INTACT (Y/N / NA SAMPLES ACCEPTED Y N EGG Dyen Road, Santa Ann, CA. TIME bril. 4060 1245 1059 7 云无 28 100 HARD COPY PDF 994 TONO & CONTRY RZ 91/41/4 DATE 0000 ITT DYEN ROAD SAME DAY
NEXT DAY
2 DAYS
3 DAYS 81153-43 8/1/53.54 81153.49 81153-44 5B-194-0.05 81153-4 LAB ID **TURN AROUND TIME** RECEIVED IN GOOD COND(Y) N TOTAL NUMBER OF CONTAINERS AFCOM NORMAL RUSH CUSTODY SEALS Y N NA EB-041416-3 SB-191-00 SR-48-0-88 SB-1915-0.05 196-0.05 50-0-651-95 58-176-3 SB-176-71 COMPANY ADDRESS SAMPLE ID SB-169-2 1-h91-85 SR-164-3 2B-169-1 SB-193-1 PROJECT NAME SR-193-2 SITE NAME AND COMPANY ADDRESS

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 04/14/2016
Date Reported 04/26/2016

Job Number	Order Date	Client
81153	04/14/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 54 samples with the following specification on 04/14/2016.

La	b ID	Sample ID	Sample Date	Matr:	ix		Quantity Of	Containers
8115	3.54	EB-041416-2	04/14/2016	Aqueo	ous		1	
	Method	^ Submethod	Req	Date	Priority	TAT	Units	
	8082		04/2	1/2016	2	Normal	ug/L	
	b ID	Sample ID	Sample Date	Matr:	Ĺх		Quantity Of	Containers
8115	3.04	SB-177-1'	04/14/2016	Soil			1	
8115	3.05	SB-177-3'a	04/14/2016	Soil			1	
8115	3.06	SB-177-3'	04/14/2016	Soil			1	
8115	3.11	SB-178-1'	04/14/2016	Soil			1	
8115	3.12	SB-178-3'a	04/14/2016	Soil			1	
8115	3.13	SB-178-3'	04/14/2016	Soil			1	
8115	3.17	SB-179-1'	04/14/2016	Soil			1	
8115	3.18	SB-179-3'a	04/14/2016	Soil			1	
8115	3.19	SB-179-3'	04/14/2016	Soil			1	
8115	3.24	SB-180-1'	04/14/2016	Soil			1	
8115	3.25	SB-180-2'a	04/14/2016	Soil			1	
8115	3.26	SB-180-2'	04/14/2016	Soil			1	
8115	3.48	SB-164-1'	04/14/2016	Soil			1	
8115	3.50	SB-169-1'	04/14/2016	Soil			1	
8115	3.52	SB-176-1'	04/14/2016	Soil			1	
	Method	^ Submethod	Req	Date	Priority	TAT	Units	
	(8082)		04/2	1/2016	2	Normal	ug/Kg	
8115	3.07	SB-177-5'	04/14/2016	Soil			1	
8115	3.08	SB-177-8'	04/14/2016	Soil			1	
8115	3.09	SB-177-10'	04/14/2016	Soil			1	
8115	3.14	SB-178-5'	04/14/2016	Soil			1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 04/14/2016
Date Reported 04/26/2016

Job Number	Order Date	Client
81153	04/14/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

81153.15	SB-178-8'	04/14/2016	Soil	1
81153.16	SB-178-10'	04/14/2016	Soil	1
81153.20	SB-179-5'	04/14/2016	Soil	1
81153.21	SB-179-8'	04/14/2016	Soil	1
81153.22	SB-179-10'	04/14/2016	Soil	1
81153.28	SB-181-1'	04/14/2016	Soil	1
81153.29	SB-181-3'	04/14/2016	Soil	1
81153.35	SB-185-1'	04/14/2016	Soil	1
81153.36	SB-185-3'	04/14/2016	Soil	1
81153.43	SB-193-1'	04/14/2016	Soil	1
81153.44	SB-194-3'	04/14/2016	Soil	1
81153.49	SB-164-3'	04/14/2016	Soil	1
81153.51	SB-169-3'	04/14/2016	Soil	1
81153.53	SB-176-3'	04/14/2016	Soil	1

Me	thod ^ Submethod	Req D	ate 1	Priority	TAT	Units	
AF	RCHIVE	04/21/2	2016	2	Normal		
Lab I	D Sample ID	Sample Date	Matriz	ĸ	(Quantity Of	Containers
81153.01	SB-187-0.05'	04/14/2016	Solid			1	
81153.23	SB-180-0.05'	04/14/2016	Solid			1	
81153.27	7 SB-181-0.05'	04/14/2016	Solid			1	
81153.30	SB-182-0.05'	04/14/2016	Solid			1	
81153.31	SB-183-0.05'	04/14/2016	Solid			1	
81153.32	SB-184-0.05'	04/14/2016	Solid			1	
81153.33	SB-185-0.05'	04/14/2016	Solid			1	
81153.34	SB-186-0.05'	04/14/2016	Solid			1	
36-	thad A Gubmathad	D D		Dead and term	mam		

M	ethod	^ Submethod		Req Date	Pr	iority	TAT	Units	
(8	8082)			04/21/2016		2	Normal	ug/Kg	
81153.0)2	SB-179-0.05'	04/14/2	016 Sc	olid			1	
81153.0)3	SB-177-0.05'	04/14/2	016 Sc	olid			1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 C Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 04/14/2016
Date Reported 04/26/2016

Job Number	Order Date	Client
81153	04/14/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

8115	3.10	SB-178-0.05'	04/14/2	016	Solid	d		1	
•	Method	^ Submethod		Req	Date	Priority	TAT	Units	
	ARCHIV	Έ		04/2	1/2016	2	Normal		
8115	3.37	SB-188-0.05'	04/14/2	016	Soli	i		1	
8115	3.38	SB-189-0.05'	04/14/2	016	Solid	i		1	
8115	3.39	SB-190-0.05'	04/14/2	016	Solid	i		1	
8115	3.40	SB-191-0.05'	04/14/2	016	Solid	i		1	
8115	3.41	SB-192-0.05'	04/14/2	016	Solid	i		1	
8115	3.42	SB-193-0.05'	04/14/2	016	Solid	i		1	
8115	3.45	SB-194-0.05'	04/14/2	016	Solid	i		1	
8115	3.46	SB-195-0.05'	04/14/2	016	Solid	i		1	
8115	3.47	SB-196-0.05'	04/14/2	016	Solid	i		1	

The samples were analyzed as specified on the enclosed chain of custody. Analytical non-conformances have been noted on the report.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Reymana
Checked By:	Approved By:	J

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road Santa Ana, CA 90705

AETL Job Number	Submitted	Client	
81153	04/14/2016	AECOM	

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-2

Our Lab I.D.			Method Blank	81153.01		
Client Sample I.D.			SB-187-0.05'			
Date Sampled				04/14/2016		
Date Prepared			04/15/2016	04/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			04/18/2016	04/18/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	7,770		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			Method Blank	81153.01		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		85.6	94.4		
Tetrachloro-m-xylene	30-150		141	96.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 3

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road

Santa Ana, CA 90705

AETL JOD Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-3

Our Lab I.D.			Method Blank	81153.04		
Client Sample I.D.			SB-177-1'			
Date Sampled				04/14/2016		
Date Prepared			04/15/2016	04/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			04/15/2016	04/15/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	985		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			Method Blank	81153.04		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		87.9	97.2		
Tetrachloro-m-xylene	30-150		146	97.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60488883

Project Name: ITT Dyer Road

660 Dyer Road Santa Ana, CA 90705

Site

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch N	10: 041516-2A			
Our Lab I.D.			Method Blank	81153.05		
Client Sample I.D.				SB-177-3'a		
Date Sampled	Date Sampled			04/14/2016		
Date Prepared			04/15/2016	04/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			04/18/2016	04/18/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			Method Blank	81153.05		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		85.6	133		
Tetrachloro-m-xylene	30-150		141	139		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road

Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-3

Our Lab I.D.			81153.06	81153.11	81153.12	81153.13	81153.17
Client Sample I.D.			SB-177-3'	SB-178-1'	SB-178-3'a	SB-178-3'	SB-179-1'
Date Sampled			04/14/2016	04/14/2016	04/14/2016	04/14/2016	04/14/2016
Date Prepared			04/15/2016	04/15/2016	04/15/2016	04/15/2016	04/15/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			04/15/2016	04/15/2016	04/15/2016	04/15/2016	04/15/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	180	60.4	ND
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			81153.06	81153.11	81153.12	81153.13	81153.17
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		110	97.4	101	105	125
Tetrachloro-m-xylene	30-150		104	108	96.8	86.0	138

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 60488883

Project Name: ITT Dyer Road

Site
660 Dyer Road
Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: 041516-3			
Our Lab I.D.			81153.18	81153.19		
Client Sample I.D.			SB-179-3'a	SB-179-3'		
Date Sampled			04/14/2016	04/14/2016		
Date Prepared			04/15/2016	04/15/2016		
Preparation Method			3540C	3540C		
Date Analyzed			04/15/2016	04/15/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	150		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			81153.18	81153.19		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		108	110		
Tetrachloro-m-xylene	30-150		80.8	100		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: 041516-3		
Our Lab I.D.			81153.23		
Client Sample I.D.			SB-180-0.05'		
Date Sampled			04/14/2016		
Date Prepared			04/15/2016		
Preparation Method			3540C		
Date Analyzed			04/15/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			20		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	500	1000	ND		
Aroclor-1221 (PCB-1221)	500	1000	ND		
Aroclor-1232 (PCB-1232)	500	1000	ND		
Aroclor-1242 (PCB-1242)	500	1000	ND		
Aroclor-1248 (PCB-1248)	500	1000	2,840		
Aroclor-1254 (PCB-1254)	500	1000	ND		
Aroclor-1260 (PCB-1260)	500	1000	ND		
Aroclor-1262 (PCB-1262)	500	1000	ND		
Aroclor-1268 (PCB-1268)	500	1000	ND		
Our Lab I.D.			81153.23		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		88.0		
Tetrachloro-m-xylene	30-150		133		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 60488883

Project Name: ITT Dyer Road

660 Dyer Road Santa Ana, CA 90705

Site

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 041516-3		
Our Lab I.D.			81153.24		
Client Sample I.D.			SB-180-1'		
Date Sampled			04/14/2016		
Date Prepared			04/15/2016		
Preparation Method			3540C		
Date Analyzed			04/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			81153.24		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		89.8		
Tetrachloro-m-xylene	30-150		144		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-4A

Our Lab I.D.			Method Blank	81153.25	81153.26	
			Wiethou Blank			
Client Sample I.D.				SB-180-2'a	SB-180-2'	
Date Sampled				04/14/2016	1 1	
Date Prepared			04/15/2016	04/15/2016	1	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			04/18/2016	04/18/2016	04/18/2016	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	252	394	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			Method Blank	81153.25	81153.26	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		78.4	94.4	87.4	
Tetrachloro-m-xylene	30-150		146	146	144	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60488883

Project Name: ITT Dyer Road

660 Dyer Road Santa Ana, CA 90705

Site

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-4

Our Lab I.D. Method Blank 81153.27 Client Sample I.D. SB-181-0.05' Date Sampled 04/14/2016 04/15/2016 04/15/2016 Date Prepared Preparation Method 3540C 3540C Date Analyzed 04/18/2016 04/18/2016 Matrix Solid Solid Units ug/Kg ug/Kg Dilution Factor Analytes Results Results MDL **PQL** Aroclor-1016 (PCB-1016) 25.0 50.0 ND ND Aroclor-1221 (PCB-1221) 25.0 50.0 ND ND Aroclor-1232 (PCB-1232) 25.0 50.0 ND ND Aroclor-1242 (PCB-1242) 25.0 50.0 ND ND Aroclor-1248 (PCB-1248) 25.0 50.0 ND 1,150 Aroclor-1254 (PCB-1254) 25.0 50.0 ND ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND ND Our Lab I.D. 81153.27 Method Blank Surrogates %Rec.Limit % Rec. % Rec. Decachlorobiphenyl 30-150 78.4 63.0 Tetrachloro-m-xylene 30-150 146 124

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road

Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: U41516-4								
Our Lab I.D.			81153.30	81153.31	81153.32	81153.33	81153.34	
Client Sample I.D.			SB-182-0.05'	SB-183-0.05'	SB-184-0.05'	SB-185-0.05'	SB-186-0.05'	
Date Sampled			04/14/2016	04/14/2016	04/14/2016	04/14/2016	04/14/2016	
Date Prepared			04/15/2016	04/15/2016	04/15/2016	04/15/2016	04/15/2016	
Preparation Method			3540C	3540C	3540C	3540C	3540C	
Date Analyzed			04/19/2016	04/19/2016	04/19/2016	04/19/2016	04/19/2016	
Matrix			Solid	Solid	Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	40,800	1,520	2,010	2,110	4,480	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND	
Our Lab I.D.			81153.30	81153.31	81153.32	81153.33	81153.34	
Surrogates	%Rec.Limit		% Rec.					
Decachlorobiphenyl	30-150		100	104	120	88.5	133	
Tetrachloro-m-xylene	30-150		124	92.0	105	75.8	66.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **12**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road Santa Ana, CA 90705

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Datcii i	NO: U41516-4				
Our Lab I.D.			81153.37	81153.38	81153.39	81153.40	81153.41
Client Sample I.D.	1		SB-188-0.05'	SB-189-0.05'	SB-190-0.05'	SB-191-0.05'	SB-192-0.05'
Date Sampled			04/14/2016	04/14/2016	04/14/2016	04/14/2016	04/14/2016
Date Prepared			04/15/2016	04/15/2016	04/15/2016	04/15/2016	04/15/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			1 1	04/19/2016	04/19/2016	04/19/2016	04/19/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	4,990	18,800	644	18,100	1,590
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			81153.37	81153.38	81153.39	81153.40	81153.41
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		102	90.4	97.2	95.6	109
Tetrachloro-m-xylene	30-150		144	91.6	104	114	128

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 60488883

Project Name: ITT Dyer Road

660 Dyer Road Santa Ana, CA 90705

Site

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 041516-4

Our Lab I.D.			81153.42	81153.45	81153.46	81153.47	
Client Sample I.D.			SB-193-0.05'	SB-194-0.05'	SB-195-0.05'	SB-196-0.05'	
Date Sampled			04/14/2016	04/14/2016	04/14/2016	04/14/2016	
Date Prepared			04/15/2016	04/15/2016	04/15/2016	04/15/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			04/19/2016	04/19/2016	04/19/2016	04/19/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	4,440	268	3,600	1,870	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			81153.42	81153.45	81153.46	81153.47	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		139	93.2	114	97.0	
Tetrachloro-m-xylene	30-150		83.2	90.5	108	76.4	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **14**

Project ID: 60488883

Project Name: ITT Dyer Road

660 Dyer Road Santa Ana, CA 90705

Site

AETL Job Number Submitted Client
81153 04/14/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-4A Our Lab I.D. 81153.48 81153.50 81153.52 SB-176-1' Client Sample I.D. SB-164-1' SB-169-1' Date Sampled 04/14/2016 04/14/2016 04/14/2016 04/15/2016 04/15/2016 04/15/2016 Date Prepared Preparation Method 3540C 3540C 3540C 04/19/2016 04/19/2016 04/19/2016 Date Analyzed Matrix Soil Soil Soil Units ug/Kg ug/Kg ug/Kg Dilution Factor Analytes Results Results Results MDL **PQL** Aroclor-1016 (PCB-1016) 25.0 50.0 ND ND ND Aroclor-1221 (PCB-1221) 25.0 50.0 ND ND ND Aroclor-1232 (PCB-1232) 25.0 50.0 ND ND ND Aroclor-1242 (PCB-1242) 25.0 50.0 ND ND ND Aroclor-1248 (PCB-1248) 25.0 50.0 ND ND 329 Aroclor-1254 (PCB-1254) 25.0 50.0 ND 336 ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND ND ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND ND ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND ND ND Our Lab I.D. 81153.48 81153.50 81153.52 Surrogates %Rec.Limit % Rec. % Rec. % Rec. Decachlorobiphenyl 30-150 71.0 130 96.0 Tetrachloro-m-xylene 30-150 121 120 123

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 15

Project ID: 60488883

Project Name: ITT Dyer Road

Site 660 Dyer Road

Santa Ana, CA 90705

 AETL Job Number
 Submitted
 Client

 81153
 04/14/2016
 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 042116

		QO Daton	140. 042110			
Our Lab I.D.			Method Blank	81153.54		
Client Sample I.D.				EB-041416-2		
Date Sampled				04/14/2016		
Date Prepared			04/21/2016	04/21/2016		
Preparation Method			3510C	3510C		
Date Analyzed			04/22/2016	04/22/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	81153.54		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		74.5	86.6		
Tetrachloro-m-xylene	75-125		61.8	34.7		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **16**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042116; Dup or Spiked Sample: B042116; LCS: Clean Water; QC Prepared: 04/21/2016; QC Analyzed: 04/22/2016; Units: ug/L

	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit	
Aroclor-1260 (PCB-1260)	5.00	6.80	136	5.00	6.85	137	<1	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	0.924	92.4	1.00	1.00	100	7.9	75-125	<20	
Tetrachloro-m-xylene	1.00	1.28	128	1.00	0.857	85.7	39.6	75-125	<20	

QC Batch No: 042116; Dup or Spiked Sample: B042116; LCS: Clean Water; QC Prepared: 04/21/2016; QC Analyzed: 04/22/2016; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	6.55	131	75-125			
Surrogates							
Decachlorobiphenyl	1.00	0.883	88.3	75-125			
Tetrachloro-m-xylene	1.00	1.25	125	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 17

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-2A; Dup or Spiked Sample: 81171.01; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	695	139	500	640	128	8.2	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	720	144	500	665	133	7.9	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	55.0	110	50.0	48.0	96.0	13.6	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	68.5	137	50.0	64.0	128	6.8	30-150	<20

QC Batch No: 041516-2A; Dup or Spiked Sample: 81171.01; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	705	141	500	705	141	<1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	660	132	500	620	124	6.3	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	49.6	99.2	50.0	45.3	90.6	9.1	30-150	<20	
Tetrachloro-m-xylene	50.0	45.0	90.0	50.0	62.0	124	31.8	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 18

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-3; Dup or Spiked Sample: 81153.19; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	680	136	500	700	140	2.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	680	136	500	705	141	3.6	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	54.0	108	50.0	53.0	106	1.9	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	61.5	123	50.0	44.7	89.4	31.6	30-150	<20

QC Batch No: 041516-3; Dup or Spiked Sample: 81153.19; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	745	149	500	720	144	3.4	50-150	<20	
Aroclor-1260 (PCB-1260)	500	640	128	500	605	121	5.6	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	50.5	101	50.0	46.7	93.4	7.8	30-150	<20	
Tetrachloro-m-xylene	50.0	48.9	97.8	50.0	62.5	125	24.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 19

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-4A; Dup or Spiked Sample: 81153.52; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	1,740 M	348	500	1,610 M	322	7.8	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	710	142	500	710	142	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	48.0	96.0	50.0	48.0	96.0	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	72.0	144	50.0	64.0	128	11.8	30-150	<20

QC Batch No: 041516-4A; Dup or Spiked Sample: 81153.52; LCS: Clean Sand; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	625	125	500	595	119	4.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	515	103	500	530	106	2.9	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	48.7	97.4	50.0	35.5	71.0	31.4	30-150	<20	
Tetrachloro-m-xylene	50.0	72.5	145	50.0	61.5	123	16.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **20**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-2; Dup or Spiked Sample: 81171.01; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	695	139	500	640	128	8.2	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	720	144	500	665	133	7.9	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	55.0	110	50.0	48.0	96.0	13.6	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	68.5	137	50.0	64.0	128	6.8	30-150	<20

QC Batch No: 041516-2; Dup or Spiked Sample: 81171.01; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	705	141	500	705	141	<1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	660	132	500	620	124	6.3	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	49.6	99.2	50.0	45.3	90.6	9.1	30-150	<20	
Tetrachloro-m-xylene	50.0	45.0	90.0	50.0	62.0	124	31.8	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **21**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-3; Dup or Spiked Sample: 81153.19; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	680	136	500	700	140	2.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	680	136	500	705	141	3.6	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	54.0	108	50.0	53.0	106	1.9	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	61.5	123	50.0	44.7	89.4	31.6	30-150	<20

QC Batch No: 041516-3; Dup or Spiked Sample: 81153.19; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	745	149	500	720	144	3.4	50-150	<20	
Aroclor-1260 (PCB-1260)	500	640	128	500	605	121	5.6	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	50.5	101	50.0	46.7	93.4	7.8	30-150	<20	
Tetrachloro-m-xylene	50.0	48.9	97.8	50.0	62.5	125	24.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **22**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81153	04/14/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 041516-4; Dup or Spiked Sample: 81153.52; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	1,740 M	348	500	1,610 M	322	7.8	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	710	142	500	710	142	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	48.0	96.0	50.0	48.0	96.0	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	72.0	144	50.0	64.0	128	11.8	30-150	<20

QC Batch No: 041516-4; Dup or Spiked Sample: 81153.52; LCS: Blank; QC Prepared: 04/15/2016; QC Analyzed: 04/18/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	625	125	500	595	119	4.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	515	103	500	530	106	2.9	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	48.7	97.4	50.0	35.5	71.0	31.4	30-150	<20	
Tetrachloro-m-xylene	50.0	72.5	145	50.0	61.5	123	16.4	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 3

Date Received 04/15/2016
Date Reported 04/29/2016

Job Number	Order Date	Client
81168	04/15/2016	AECOM

Project ID: 60488883

Project Name: ITT Dyer Road
Site: ITT Dyer Road

660 Dyer Road

Santa Ana, CA 90705

Enclosed please find results of analyses of 3 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96321 o' Z

TEST INSTRUCTIONS & COMMENTS Use Estmeten Method က် Page 80-3450c 3240 RELINQUISHED BY: Jate: OC Time: AETL JOB NO. 811 68 Time: ANALYSIS REQUESTED ECEIVED BY: rinted Name -PANNULL 40000 RELINQUISHED BY nohe PRES Manar. ECEIVED BY: Date SAMPLER PROJECT MANAGER CHING CANOR CONTAINER NUMBER/SIZE PROJECT # 60488883 402 Jan DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX CONGINE # Od FAX GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) Y N / NA 606 ager Road SAMPLES INTAGT MINA SAMPLES ACCEPTED X/N TIME 万名 700 app Town & Country Ross PROPERLY COOLED 197 HARD COPY PDF DATE IT Byer Rous H/h ITT Dies Roul RUSH | SAME DAY | SAME DAY | C 2 DAYS | C 3 Ama, CA 58-199-05 81167:23 SB-197-0.05 81168-01 LAB ID AELOM TURN AROUND TIME Sunta RECEIVED IN GOOD COND. Y/N TOTAL NUMBER OF CONTAINERS CUSTODY SEALS Y/ N NA COMPANY ADDRESS SAMPLE ID MORMAL PROJECT NAME SITE NAME AND COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 04/15/2016
Date Reported 04/29/2016

Job Number	Order Date	Client
81168	04/15/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 3 samples with the following specification on 04/15/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
81168.01	SB-197-0.05	04/14/2016	Solid	1
81168.02	SB-198-0.05	04/14/2016	Solid	1
81168.03	SB-199-0.05	04/14/2016	Solid	1
Metho	od ^ Submethod	Req Da	ate Priority	TAT Units

(8082) 04/22/2016 2 Normal ug/Kg

The samples were analyzed as specified on the enclosed chain of custody.

No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

ITT Dyer Road 660 Dyer Road Santa Ana, CA 90705

 AETL Job Number
 Submitted
 Client

 81168
 04/15/2016
 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042016

		QC Batch	NO: U42U16				
Our Lab I.D.			Method Blank	81168.01	81168.02	81168.03	
Client Sample I.D.				SB-197-0.05	SB-198-0.05	SB-199-0.05	
Date Sampled				04/14/2016	04/14/2016	04/14/2016	
Date Prepared			04/20/2016	04/20/2016	04/20/2016	04/20/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			04/20/2016	04/20/2016	04/20/2016	04/20/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	4,580	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			Method Blank	81168.01	81168.02	81168.03	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		84.8	88.0	94.4	71.0	
Tetrachloro-m-xylene	30-150		89.6	136	135	76.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

ITT Dyer Road 660 Dyer Road

Santa Ana, CA 90705

AETL Job Number	Submitted	Client
81168	04/15/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042016; Dup or Spiked Sample: 81194.06; LCS: Blank; QC Prepared: 04/20/2016; QC Analyzed: 04/20/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	605	121	500	590	118	2.5	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	520	104	500	520	104	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	37.5	75.0	50.0	46.4	92.8	21.2	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	62.0	124	50.0	45.6	91.2	30.5	30-150	<20

QC Batch No: 042016; Dup or Spiked Sample: 81194.06; LCS: Blank; QC Prepared: 04/20/2016; QC Analyzed: 04/20/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	660	132	500	650	130	1.5	50-150	<20	
Aroclor-1260 (PCB-1260)	500	580	116	500	630	126	8.3	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	45.8	91.6	50.0	47.6	95.2	3.9	30-150	<20	
Tetrachloro-m-xylene	50.0	49.6	99.2	50.0	38.7	77.4	24.7	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 18

Date Received 04/28/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81378	04/28/2016	AECOM

Project ID: 60488883
Project Name: ITT Dyer Road

Site: ITT Canon Facility

798 E Alton Ave. Santa Ana, CA 92705

Enclosed please find results of analyses of 24 concrete and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96472

878/8

TEST INSTRUCTIONS & COMMENTS 089/JOHN EXTRACTED က် က် METHOD 3540C 8137812 000 81378.06 31378.L 11.88518 81378 3 1.84 518 01.86818 Date of Time: ANALYSIS REQUESTED AETL JOB No. 105 アイトラン 2308 PCBs Date: Inchile PRES. しなからり PHONE 714-689-7193 SAMPLER: Signature: COST BROWS NUMBER/SIZE CONTAINER PROJECT MANAGER DATA DELIVERABLE REQUIRED BORATORY consult MATRIX FAX ☐ HARD COPY
☐ PDF
☐ GEOTRACKER (GLOBAL ID)
☐ OTHER (PLEASE SPECIFY) Y / N/ NA 0924 1150 222 1300 0935 1053 1330 1020 0121 TIME 1250 1324 0843 000 SAMPLES ACCEPTED W37 PROPERLY COOLED SAMPLE RECEIPT - TO BE FILLED BY SAMPLES INTACT DATE 911271 COMPANY ADDRESS 798 FAFFOR Brog HT Caron Galler ☐ SAME DAY
☐ NEXT DAY
☐ 2 DAYS
☐ 3 DAYS LAB ID TURN AROUND-TIME 510-206-015-018 512-1691-85 5-25 SB-176-15-25 SB-207-01-0,5 **TOTAL NUMBER OF CONTAINERS** RECEIVED IN GOOD COND. /Y / Ŋ 50-51880-C, J 58-200-04-0,5 58-202-0-B RUSH SB-204-0-6,5 58-29-0-018 510-0-012-85 28-2N-040.5 5 12-203-0-0 S COMPANYALTCOM CUSTODY SEALS Y (N / N/A PROJECT NAME 20160427-al SB205-0-C15 S13-164-1 SAMPLE ID NORMAL SITE NAME ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

96298

8/378 AETL JOB No.

TEST INSTRUCTIONS & COMMENTS Ž က Page 2 正xtractal 2045E/m 81378.23 81378,20 81378.24 8/378,21 81378.2 81378.16 81378-19 10 - 8-16 Time: REQUESTED 2808-5070 Jate Tresle JOUISHED BY PRES. いってもん PHONE 714-689-7193 7 SAMPLER: Signature: NUMBER/SIZE CONTAINER Coecy #3883 DATA DELIVERABLE REQUIRED Chus Calens SAMPLE RECEIPT - TO BE FILLED BY LABORATORY Colored MATRIX FAX PROPERLY COOLED Y //N / NA SAMPLES INTACT Y/ N/ NA SAMPLES ACCEPTED Y / N のナナ 9151 405 1430 Santagna 345 TIME 1300 15/0 2512 5 111CU+ DATE 999 town + Country SAME DAY

NEXT DAY

2 DAYS

3 DAYS 978 alter AZE LAB ID **TURN AROUND TIME** SB-24-00,5 **FOTAL NUMBER OF CONTAINERS** 38-215-0-51 RECEIVED IN GOOD COND/Y /A 50-213-0-015 513-212-82 SR-Uncolor 20160427-02 50-216-Cab.5 RUSH COMPANY A E COM 5B-2 [[-0-028 CUSTODY SEALS Y(/ N / NA 20160427-A 2016427-0 SAMPLE ID NORMAL NORMAL SITE NAME ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 04/28/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81378	04/28/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 25 samples with the following specification on 04/28/2016.

Lab ID	Sample ID	Sample Date	Matri	ĸ		Quantity	Of Containers
81378.25	20160427-d	04/27/2016	Aqueou	ıs			1
Method	^ Submethod	Req I	Date 1	Priority	TAT	Unit	3
8082		05/05/2	2016	2	Normal	ug/L	
Lab ID	Sample ID	Sample Date	Matri	ĸ		Quantity	Of Containers
81378.01	SB-200-0-0.5	04/27/2016	Solid				1
81378.02	SB-203-0-0.5	04/27/2016	Solid				1
81378.03	SB-201-0-0.5	04/27/2016	Solid				1
81378.04	SB-205-0-0.5	04/27/2016	Solid				1
81378.05	SB-202-0-0.5	04/27/2016	Solid				1
81378.06	SB-204-0-0.5	04/27/2016	Solid				1
81378.07	SB-176-1.5-2.5	04/27/2016	Solid				1
81378.08	SB-169-1.5-2.5	04/27/2016	Solid				1
81378.09	SB-164-1.5-2.5	04/27/2016	Solid				1
81378.10	SB-206-0-0.5	04/27/2016	Solid				1
81378.11	SB-209-0-0.5	04/27/2016	Solid				1
81378.12	SB-208-0-0.5	04/27/2016	Solid				1
81378.13	SB-207-0-0.5	04/27/2016	Solid				1
81378.14	SB-210-0-0.5	04/27/2016	Solid				1
81378.15	20160427-A1	04/27/2016	Solid				1
81378.16	SB-211-0-0.5	04/27/2016	Solid				1
81378.17	20160427-A2	04/27/2016	Solid				1
81378.18	SB-215-0-0.5	04/27/2016	Solid				1
81378.19	SB-214-0-0.5	04/27/2016	Solid				1
81378.20	SB-212-0-0.5	04/27/2016	Solid				1
81378.21	SB-213-0-0.5	04/27/2016	Solid				1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740
Attention: Chris Cavers

Project ID: 60488883

Date Received 04/28/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81378	04/28/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

81378.22	SB-217-0-0.5	04/27/2016	Solid	1
81378.23	SB-216-0-0.5	04/27/2016	Solid	1
81378.24	20160427-A3	04/27/2016	Solid	1

Method ^ Submethod	Req Date	Priority	TAT	Units	
(8082)	05/05/2016	2	Normal	ug/Kg	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 042916

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			04/29/2016		
Preparation Method			3540C		
Date Analyzed			05/02/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		90.0		
Tetrachloro-m-xylene	30-150		93.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042916

40 2400.000.000						
		81378.01				
Client Sample I.D.		SB-200-0-0.5				
		04/27/2016				
		04/29/2016				
		3540C				
		05/02/2016				
		Solid				
		ug/Kg				
Dilution Factor		2				
MDL	PQL	Results				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
	50 50 50 50 50 50 50 50	50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100	SB-200-0-0.5 04/27/2016 04/29/2016 3540C 05/02/2016 Solid ug/Kg 2 MDL PQL Results 50 100 ND 50 100 ND	SB-200-0-0.5 04/27/2016 04/29/2016 3540C 05/02/2016 Solid ug/Kg 2	SB-200-0-0.5 04/27/2016 04/29/2016	SB-200-0-0.5

Comment(s):

81378.01: Analyzed under dilution due to matrix interference

Our Lab I.D.		81378.01		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	93.8		
Tetrachloro-m-xylene	30-150	81.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60488883

Project Name: ITT Dyer Road

Site ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042916

		QC Batci	n NO: U42916		
Our Lab I.D.			81378.02		
Client Sample I.D.		SB-203-0-0.5			
Date Sampled			04/27/2016		
Date Prepared			04/29/2016		
Preparation Method			3540C		
Date Analyzed			05/02/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	66.2		
Aroclor-1254 (PCB-1254)	25.0	50.0	57.8		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			81378.02		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		91.2		
Tetrachloro-m-xylene	30-150		84.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042916

Our Lab I.D.			81378.03	81378.04	81378.05	
Client Sample I.D.			SB-201-0-0.5	SB-205-0-0.5	SB-202-0-0.5	
Date Sampled			04/27/2016	04/27/2016	04/27/2016	
Date Prepared			04/29/2016	04/29/2016	04/29/2016	
Preparation Method	1		3540C	3540C	3540C	
Date Analyzed			05/02/2016	05/02/2016	05/02/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			5	5	5	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	125	250	ND	ND	ND	
Aroclor-1221 (PCB-1221)	125	250	ND	ND	ND	
Aroclor-1232 (PCB-1232)	125	250	ND	ND	ND	
Aroclor-1242 (PCB-1242)	125	250	ND	ND	ND	
Aroclor-1248 (PCB-1248)	125	250	ND	5,060	ND	
Aroclor-1254 (PCB-1254)	125	250	ND	11,700	518	
Aroclor-1260 (PCB-1260)	125	250	ND	ND	ND	
Aroclor-1262 (PCB-1262)	125	250	ND	ND	ND	
Aroclor-1268 (PCB-1268)	125	250	ND	ND	ND	

Comment(s):

81378.03: Analyzed under dilution due to matrix interference

Our Lab I.D.		81378.03	81378.04	81378.05	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	105	118	74.8	
Tetrachloro-m-xylene	30-150	79.8	68.6	71.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 60488883

Project Name: ITT Dyer Road

Site ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number Submitted Client
81378 04/28/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balci	NO: U42916				
Our Lab I.D.			81378.06	81378.07	81378.08	81378.09	
Client Sample I.D.			SB-204-0-0.5	SB-176-1.5-2.	SB-169-1.5-2.	SB-164-1.5-2.	
				5	5	5	
Date Sampled			04/27/2016	04/27/2016	04/27/2016	04/27/2016	
Date Prepared			04/29/2016	04/29/2016	04/29/2016	04/29/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			05/02/2016	05/02/2016	05/02/2016	05/02/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	853	ND	80.0	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	1,880	ND	92.3	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			81378.06	81378.07	81378.08	81378.09	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		90.2	102	103	107	
Tetrachloro-m-xylene	30-150		73.9	98.9	100	90.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batci	n No: U42916		
Our Lab I.D.			81378.10		
Client Sample I.D.			SB-206-0-0.5		
Date Sampled			04/27/2016		
Date Prepared			04/29/2016		
Preparation Method			3540C		
Date Analyzed			05/02/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	19,400		
Aroclor-1260 (PCB-1260)	125	250	1,620		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			81378.10		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		91.0		
Tetrachloro-m-xylene	30-150		80.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 60488883

Project Name: ITT Dyer Road

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Dato	II NO. 042310		
Our Lab I.D.			81378.11		
Client Sample I.D.			SB-209-0-0.5		
Date Sampled			04/27/2016		
Date Prepared			04/29/2016		
Preparation Method			3540C		
Date Analyzed			05/02/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	453		
Aroclor-1254 (PCB-1254)	25.0	50.0	1,030		
Aroclor-1260 (PCB-1260)	25.0	50.0	351		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			81378.11		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		130		
Tetrachloro-m-xylene	30-150		93.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number Submitted Client
81378 04/28/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

	QU Duton					
		81378.12				
		SB-208-0-0.5				
Date Sampled		04/27/2016				
		04/29/2016				
Preparation Method		3540C				
Date Analyzed Matrix		05/02/2016				
		Solid				
		ug/Kg				
		2				
MDL	PQL	Results				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	ND				
50	100	6,150				
50	100	3,440				
50	100	632				
50	100	ND				
50	100	ND				
		81378.12				
%Rec.Limit		% Rec.				
30-150		89.0				
30-150		47.8				
	50 50 50 50 50 50 50 50 50 50 30-150	MDL PQL 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 \$70 100 \$70 100 \$70 100 \$70 100 \$70 100	S1378.12 SB-208-0-0.5 04/27/2016 04/29/2016 3540C 05/02/2016 Solid ug/Kg 2 Results 50 100 ND 50 100 ND 50 100 ND 50 100 ND 50 100 Solid ND 50 100 Solid ND 50 100 Solid ND Solid Sol	SB-208-0-0.5 04/27/2016 04/29/2016 3540C 05/02/2016 Solid ug/Kg 2	SI378.12 SB-208-0-0.5 04/27/2016 04/29/2016 3540C 05/02/2016 Solid ug/Kg 2	SI378.12 SB-208-0-0.5 O4/27/2016 O4/29/2016 O5/02/2016 Solid Ug/Kg D

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility
798 E Alton Ave.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81378 04/28/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Buto.	1110. 042310				
Our Lab I.D.			81378.13	81378.14	81378.15	81378.16	81378.17
Client Sample I.D.			SB-207-0-0.5	SB-210-0-0.5	20160427-A1	SB-211-0-0.5	20160427-A2
Date Sampled		04/27/2016	04/27/2016	04/27/2016	04/27/2016	04/27/2016	
Date Prepared			04/29/2016	04/29/2016	04/29/2016	04/29/2016	04/29/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			05/02/2016	05/02/2016	05/02/2016	05/02/2016	05/02/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	7,640	46,400	25,600	1,860	1,940
Aroclor-1254 (PCB-1254)	25.0	50.0	8,720	21,100	12,700	1,190	1,270
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			81378.13	81378.14	81378.15	81378.16	81378.17
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		118	122	113	128	105
Tetrachloro-m-xylene	30-150		94.9	90.8	73.6	83.6	86.4

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60488883

Project Name: ITT Dyer Road

Site ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number Submitted Client
81378 04/28/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 042916

Our Lab I.D.			81378.18	81378.19	81378.20	
Client Sample I.D.			SB-215-0-0.5	SB-214-0-0.5	SB-212-0-0.5	
Date Sampled			04/27/2016	04/27/2016	04/27/2016	
Date Prepared			04/29/2016	04/29/2016	04/29/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			05/02/2016	05/02/2016	05/02/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	9,190	3,700	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	4,380	1,580	205	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	372	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			81378.18	81378.19	81378.20	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		112	114	122	
Tetrachloro-m-xylene	30-150		95.0	102	78.8	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **12**

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
81378 04/28/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 050216

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/02/2016		
Preparation Method		3540C			
Date Analyzed			05/03/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		100		
Tetrachloro-m-xylene	30-150		97.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balci	1 NO: U5U216			
Our Lab I.D.			81378.21	81378.22		
Client Sample I.D.			SB-213-0-0.5	SB-217-0-0.5		
Date Sampled			04/27/2016	04/27/2016		
Date Prepared			05/02/2016	05/02/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/03/2016	05/03/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			2	2		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	50	100	ND	ND		
Aroclor-1221 (PCB-1221)	50	100	ND	ND		
Aroclor-1232 (PCB-1232)	50	100	ND	ND		
Aroclor-1242 (PCB-1242)	50	100	ND	ND		
Aroclor-1248 (PCB-1248)	50	100	862	1,520		
Aroclor-1254 (PCB-1254)	50	100	617	ND		
Aroclor-1260 (PCB-1260)	50	100	127	ND		
Aroclor-1262 (PCB-1262)	50	100	ND	ND		
Aroclor-1268 (PCB-1268)	50	100	ND	ND		
Our Lab I.D.			81378.21	81378.22		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		81.4	94.6		
Tetrachloro-m-xylene	30-150		90.5	67.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

site

AECOM Environment 999 W. Town and Country Road

Orange, CA 92868-4713

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: **14**

Project ID: 60488883

Project Name: ITT Dyer Road

I	AETL Job Number	Number Submitted				
I	81378	04/28/2016	AECOM			

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050216

Our Lab I.D.			81378.23	81378.24		
Client Sample I.D.			SB-216-0-0.5	20160427-A3		
Date Sampled			04/27/2016	04/27/2016		
Date Prepared			05/02/2016	05/02/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/03/2016	05/03/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	125	250	ND	ND		
Aroclor-1221 (PCB-1221)	125	250	ND	ND		
Aroclor-1232 (PCB-1232)	125	250	ND	ND		
Aroclor-1242 (PCB-1242)	125	250	ND	ND		
Aroclor-1248 (PCB-1248)	125	250	ND	ND		
Aroclor-1254 (PCB-1254)	125	250	ND	ND		
Aroclor-1260 (PCB-1260)	125	250	ND	ND		
Aroclor-1262 (PCB-1262)	125	250	ND	ND		
Aroclor-1268 (PCB-1268)	125	250	ND	ND		

Comment(s):

81378.23: Analyzed under dilution due to matrix interference 81378.24: Analyzed under dilution due to matrix interference

Our Lab I.D.		81378.23	81378.24		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	102	72.3		
Tetrachloro-m-xylene	30-150	88.0	88.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 15

Project ID: 60488883

Project Name: ITT Dyer Road

ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 050416MB1

Our Lab I.D.			Method Blank	81378.25		
			Wictiod Dialik	20160427-d		
Client Sample I.D.						
Date Sampled				04/27/2016		
Date Prepared			1 1	05/04/2016		
Preparation Method			3510C	3510C		
Date Analyzed			05/12/2016	05/12/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	81378.25		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		90.3	91.9		
Tetrachloro-m-xylene	75-125		82.0	85.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **16**

Project ID: 60488883

Project Name: ITT Dyer Road

Site ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number	Submitted	Client		
81378	04/28/2016	AECOM		

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050416MB1; LCS: Clean Water; LCS Prepared: 05/04/2016; LCS Analyzed: 05/12/2016; Units: ug/L

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1260 (PCB-1260)	5.00	4.21	84.2	5.00	3.84	76.8	9.2	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	1.17	117	1.00	1.06	106	9.9	75-125	<20	
Tetrachloro-m-xylene	1.00	1.06	106	1.00	1.13	113	6.4	75-125	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 17

Project ID: 60488883

Project Name: ITT Dyer Road

Site ITT Canon Facility 798 E Alton Ave. Santa Ana, CA 92705

AETL Job Number	Submitted	Client		
81378	04/28/2016	AECOM		

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 042916; LCS: Blank; LCS Prepared: 04/29/2016; LCS Analyzed: 05/02/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.410	82.0	0.500	0.404	80.8	1.5	50-150	<20	
Aroclor-1260 (PCB-1260)	0.500	0.460	92.0	0.500	0.460	92.0	<1	50-150	<20	
Surrogates										
Decachlorobiphenyl	0.100	0.113	113	0.100	0.100	100	12.2	30-150	<20	
Tetrachloro-m-xylene	0.100	0.0986	98.6	0.100	0.101	101	2.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 18

Project ID: 60488883

Project Name: ITT Dyer Road

Site
ITT Canon Facility
798 E Alton Ave.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81378	04/28/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050216; Dup or Spiked Sample: 81348.07; LCS: Blank; QC Prepared: 05/02/2016; QC Analyzed: 05/03/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	0.500	0.470	94.0	0.500	0.404	80.8	15.1	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	0.500	0.467	93.4	0.500	0.424	84.8	9.7	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	0.100	0.0948	94.8	0.100	0.0874	87.4	8.1	30-150	<20
Tetrachloro-m-xylene	0.00	0.100	0.101	101	0.100	0.0869	86.9	15.0	30-150	<20

QC Batch No: 050216; Dup or Spiked Sample: 81348.07; LCS: Blank; QC Prepared: 05/02/2016; QC Analyzed: 05/03/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.331	66.2	0.500	0.351	70.2	5.9	50-150	<20	
Aroclor-1260 (PCB-1260)	0.500	0.352	70.4	0.500	0.396	79.2	11.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	0.100	0.0755	75.5	0.100	0.0834	83.4	9.9	30-150	<20	
Tetrachloro-m-xylene	0.100	0.0872	87.2	0.100	0.0923	92.3	5.7	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 18

Date Received 08/03/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83803	08/03/2016	AECOM

Project ID: 60488883

Project Name: ITT Dyer Road Site: 666 Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 26 solid, 8 soil and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

Nº 91689

TEST INSTRUCTIONS & COMMENTS Date: 08/08 (14 Time: 1850 d Time: 1850 က က် Use Extraction Page 2540C RELINQUISHED BY: Method Printed Sun RECEIVED B 2/12/18 83803 **ANALYSIS REQUESTED** ECEIVED BY Printed Name AETL JOB No. CHARLES Y SACTION Bob 2808 X X X PRES. RECEIVED BY SAMPLER: PROJECT # GOL 888 83 NUMBER/SIZE CONTAINER よって DATA DELIVERABLE REQUIRED PROJECT MANAGER Chrs Cavers MATRIX Carcolo # Od GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) Y/N/NA SAMPLES INTACT Y/ N / NA SAMPLES ACCEPTED YAN Synta Angelt *6*84 1040 TIME 083 1200 692 0852 OUSK. 0501 0830 9807 1243 824 097% Z 1308 999 Town of Country Road PROPERLY COOLED SAMPLE RECEIPT - TO BE FILLED BY HARD COPY DATE 666 Oyer Road, 8 PITT PAC ROUL SAME DAY
NEXT DAY
2 DAYS
3 DAYS 23703.02 83 803.-1 33843.03 330.08 83803.03 SR-225-005 83703.10 83303.04 83863.12 83303.05 83303.03 83803. A 83803.11 83303-13 33303-15 82303-14 LAB ID **TURN AROUND TIME FOTAL NUMBER OF CONTAINERS** AECOM RUSH CUSTODY SEALS Y/N/NA RECEIVED IN GOOD COND. 58-222-05a 500-126-85 58-225-0.050 58-22-05 SB-726-0050 Sep-127-195 5B-T7-0.05 SR-277-066 SR-222-005 SR-2 23-005a SR-22600S Sn-235-0-05 SB-276-0:50 COMPANY ADDRESS 500-962-85 SAMPLE ID HORMAL PROJECT NAME SITE NAME AND ADDRESS COMPANY

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

94603 **CHAIN OF CUSTODY RECORD**

83803

Page 2 of 492 TEST INSTRUCTIONS & COMMENTS ando Time: 1850 က က 457L Use Extraction RELINQUISHED BY: Printe Nachus RECEIVED BY Method 35406 2/1/2/18 ANALYSIS REQUESTED Printed Name rinted Name AETL JOB No. 1400 P10H 8 58128 Jan & Poes X X × 8 X X 2808 X Crisph Wanyoile RELINQUISHED BY PRES. Charito RECEIVED BY Printed Name SAMPLER PROJECT # 60438883 NUMBER/SIZE CONTAINER PROJECT MANAGER
Chris Gyccs/
PHONE DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX # Od FAX PROPERLY COOLED Y / M / NA Ŕ SAMPLES INTACT Y/N/NA SAMPLES ACCEPTED Y/N 1321 apply comingen 1320 152 123 TIME (150)17 1350 1339 Lpg 1 8 572 1356 CA51 153 HARD COPY 8/2/10 Roal ITT DYBY ROW DATE Gré Dren Orange, C/F SAME DAY
NEXT DAY
2 DAYS
3 DAYS 83803.CF 59-215-14 83803-30 33303.22 SB-210-0.5 83803.23 SB-210-16 83803.24 513-205-15 183803.20 93803.16 59-215-05 33803.29 83703.25 83803.28 33303.13 93303.21 58-205.0.59 8383.19 23803.17 LAB ID **FURN AROUND TIME** TOTAL NUMBER OF CONTAINERS RUSH RECEIVED IN GOOD COND. (Y) CUSTODY SEALS Y(/ N/NA AECOM SB-205-05 Sa-201-115 51-51-05 512-206-512 512182-0.5 8-201-0° SB-M3-0.5 58-187-15 SR-206-0.5 COMPANY ADDRES SAMPLE ID MORMAL PROJECT NAME SITE NAME AND ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY)

1 Time: 1350

100/

Date: OX

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD Nº 94604

~ 83803 AETL JOB No. PROJECT MANAGER 1

子内のか		PROJECT MANAGER	H Care X	AETL JOB No.		Page of
COMPANY ADDRESS		PHONE		ANALY	ANALYSIS REQUESTED	
	eley Town & Country	FAX				LEST INSTRUCTIONS & COMMENTS
PROJECT NAME ITO OUR ROAD	000	PROJECT #	6048883	4		
SITE NAME GGG RECK RZ	. RZ, Sylvta Broon, C.A.	# 0d # PO #		- 805		Use extraction
ADDRESS ITTION ROAD				3 <		methos
SAMPLE ID LAB ID	DATE	TIME MATRIX	CONTAINER NUMBER/SIZE	PRES.		24560
159-23-0.05 23-303.31	813/4 ng	of Cenambe	Hor	√ √		
\$ 68-134-005 838-3.32				1		
\$ 22 8 440 0.00 83803.23		170		×		
159-224-00 83803.34	1218	S		K		
\$ 50-174-0.05 83823.35	1400	8		X		
\$58-23.36 35803.36	041EI	0		X		
6 B 140, 240-065 83 803.37		1400		人		
50-23700 83303.38		3rm		X		
\$ 58-749-0.05 83803.39	Shh! Inds	15		Y		
[SR 24000 33803.40	1436	9	9	<u>\</u>		
1 5g-244-005 838c3.41	7th1	17	A	Υ,		
50-08036 8303-23	15%	20 valer	/ C Armber	L		
-13	×	-				
77	,					
1.0						
SAMPLE RECEIPT - TO	TO BE FILLED BY L	LABORATORY		SAMPLER:	RELINQUISHED BY:	RELINQUISHED BY: 3.
TOTAL NUMBER OF CONTAINERS	PROPERLY COOLED	AN / NA	Signature:	ure:	Signature:	Signature: W.
CUSTODY SEALS Y (N /NA	SAMPLES INTACT Y/ N/ NA	Y/N/NA	Printed	Printed Name: Ody Pa	Printed Name:	Printed Apply Inch
RECEIVED IN GOOD COND. (Y)	SAMPLES ACCEPTED Y/N	₹/ × 92	Date:	813 Time: 1480	Date: Time:	D& (2) (C Time: 1850
TURN AROUND TIME	DATA DEL	DATA DELIVERABLE REQUIRED			RECEIVED BY:	LABORATGRY: AE 7 3.
NORMAL RUSH SAMEDAY			Signat	Signature: $q_{k}\mathcal{U}$	Signature:	Segnature
] 	GEOTRACKER (GLOBAL ID)	Printe	7 38	ed Name:	Ime:
		SE SPECIFY)		3/1¢ Time: 1600	Date: Time:	Date 2 / 12 Time: 1850
DISTRIBILITION: WHITE - I aboratory	CANARY - Laboratory	DINK - Project/Accol	int Monogoor	VELLOW - Sampler/Originator		

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

Christine Novshadayan

From: Sent: Foes, David [David.Foes@aecom.com] Monday, August 22, 2016 2:54 PM

To:

JIM LIN; Cavers, Chris

Cc:

Christine Novshadayan (AETL)

Subject:

RE: Summary Table & PDF of results of analysis from project "ITT Dyer Road, Santa Ana,

CA"

Jim, Can you please change sample "SB-249-0.05" taken at 1445 on 8/3/16 (AETL # 83803.39) to "SB-242-0.05" Same date and time

Thanks

David Foes, CPESC, QSP/QSD P: (714) 689-7218 C: (949) 463-3637

From: JIM LIN [mailto:jiml@aetlab.com]
Sent: Friday, August 19, 2016 4:46 PM

To: Cavers, Chris

Cc: Foes, David; Christine Novshadayan (AETL)

Subject: Summary Table & PDF of results of analysis from project "ITT Dyer Road, Santa Ana, CA"

Dear Chris,

Herewith please find Summary Table & PDF of results of analysis from project ID 601488883 "ITT Dyer Road, Santa Ana, CA"

AETL Job No: 83803 (EDD in process)

Thank you.

Should you have additional question, please feel free to contact us.

Jim Lin Operations Manager AETL 818-845-8200

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 08/03/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83803	08/03/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 42 samples with the following specification on 08/03/2016.

La.	b ID	Sample ID	Sample Date	e Matr	ix		Quantity Of	Containers
83803	3.42	EB-080316	08/03/2016	Aque	ous		1	
	Method	^ Submethod	Re	eq Date	Priority	TAT	Units	
	8082		08	/10/2016	2	Normal	ug/L	
La	b ID	Sample ID	Sample Date	e Matr	ix		Quantity Of	Containers
83803	3.16	SB-182-0.5	08/03/2016	Soil			1	
83803	3.18	SB-205-0.5	08/03/2016	Soil			1	
83803	3.19	SB-205-0.5a	08/03/2016	Soil			1	
83803	3.21	SB-206-0.5	08/03/2016	Soil			1	
	Method	^ Submethod	Re	q Date	Priority	TAT	Units	
	(8082)		08	/10/2016	2	Normal	ug/Kg	
83803	3.17	SB-182-1.5	08/03/2016	Soil			1	
83803	3.20	SB-205-1.5	08/03/2016	Soil			1	
	Method	^ Submethod	Re	eq Date	Priority	TAT	Units	
	ARCHIV			/10/2016	2	Normal		
83803	3.22	SB-206-1.5	08/03/2016	Soil			1	
83803	3.23	SB-210-0.5	08/03/2016	Soil			1	
83803	3.24	SB-210-1.5	08/03/2016	Soil			1	
83803	3.25	SB-207-0.5	08/03/2016	Soil			1	
83803	3.26	SB-207-1.5	08/03/2016	Soil			1	
83803	3.27	SB-173-0.5	08/03/2016	Soil			1	
83803	3.28	SB-173-1.5	08/03/2016	Soil			1	
83803	3.29	SB-215-0.5	08/03/2016	Soil			1	
83803	3.30	SB-215-1.5	08/03/2016	Soil			1	
83803	3.01	SB-276-0.05	08/03/2016	Solid	f		1	
83803	3.02	SB-276-0.05a	08/03/2016	Solid	i		1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 08/03/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83803	08/03/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

83803.03	SB-277-0.05	08/03/2016	Solid	1
83803.04	SB-277-0.05a	08/03/2016	Solid	1
83803.05	SB-222-0.05	08/03/2016	Solid	1
83803.06	SB-222-0.05a	08/03/2016	Solid	1
83803.07	SB-2221-0.05	08/03/2016	Solid	1
83803.08	SB-223-0.05	08/03/2016	Solid	1
83803.09	SB-223-0.05a	08/03/2016	Solid	1
83803.10	SB-225-0.05	08/03/2016	Solid	1
83803.11	SB-225-0.05a	08/03/2016	Solid	1
83803.12	SB-226-0.05a	08/03/2016	Solid	1
83803.13	SB-226-0.05	08/03/2016	Solid	1
83803.14	SB-235-0.05	08/03/2016	Solid	1
83803.15	SB-232-0.05	08/03/2016	Solid	1
83803.31	SB-231-0.05	08/03/2016	Solid	1
83803.32	SB-234-0.05	08/03/2016	Solid	1
83803.33	SB-228-0.05	08/03/2016	Solid	1
83803.34	SB-229-0.05	08/03/2016	Solid	1
83803.35	SB-239-0.05	08/03/2016	Solid	1
83803.36	SB-236-0.05	08/03/2016	Solid	1
83803.37	SB-240-0.05	08/03/2016	Solid	1
83803.38	SB-237-0.05	08/03/2016	Solid	1
83803.39	SB-242-0.05	08/03/2016	Solid	1
83803.40	SB-241-0.05	08/03/2016	Solid	1
83803.41	SB-244-0.05	08/03/2016	Solid	1

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Raymana
Checked By:	Approved By:	3

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 C
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 08/03/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83803	08/03/2016	AECOM

CERTIFICATE OF ANALYSIS
CASE NARRATIVE

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road

Santa Ana, CA 92705

ĺ	AETL Job Number	Submitted	Client
I	83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		de Daton no					
Our Lab I.D.			Method Blank	83803.01	83803.02	83803.03	83803.04
Client Sample I.D.				SB-276-0.05	SB-276-0.05a	SB-277-0.05	SB-277-0.05a
Date Sampled				08/03/2016	08/03/2016	08/03/2016	08/03/2016
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Preparation Method Date Analyzed Matrix Units			3540C	3540C	3540C	3540C	3540C
			08/05/2016	08/05/2016	08/05/2016	08/05/2016	08/05/2016
			Solid	Solid	Solid	Solid	Solid
			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	848	668	ND	ND
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	1,140	815	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			Method Blank	83803.01	83803.02	83803.03	83803.04
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		116	102	82.0	127	111
Tetrachloro-m-xylene	30-150		140	109	106	106	136

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60488883

Project Name: ITT Dyer Road

666 Dyer Road

Site

Santa Ana, CA 92705

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Duton no	. 000+10MB1B				
Our Lab I.D.			83803.05	83803.06	83803.07	83803.08	83803.09
Client Sample I.D.			SB-222-0.05	SB-222-0.05a	SB-2221-0.05	SB-223-0.05	SB-223-0.05a
Date Sampled			08/03/2016	08/03/2016	08/03/2016	08/03/2016	08/03/2016
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/05/2016	08/05/2016	08/05/2016	08/05/2016	08/05/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	5,970	6,080	14,900	5,820	6,650
Aroclor-1254 (PCB-1254)	25.0	50.0	2,970	3,070	10,700	2,540	3,350
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			83803.05	83803.06	83803.07	83803.08	83803.09
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		88.8	84.6	68.4	63.4	66.8
Tetrachloro-m-xylene	30-150		95.0	128	82.0	83.2	89.6

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60488883

Project Name: ITT Dyer Road

Site 666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii N): U0U410WID1D				
Our Lab I.D.			83803.10	83803.11	83803.12	83803.13	83803.14
Client Sample I.D.			SB-225-0.05	SB-225-0.05a	SB-226-0.05a	SB-226-0.05	SB-235-0.05
Date Sampled			08/03/2016	08/03/2016	08/03/2016	08/03/2016	08/03/2016
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/05/2016	08/05/2016	08/05/2016	08/05/2016	08/05/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	6,110	7,860	4,950	4,560	43,800
Aroclor-1254 (PCB-1254)	25.0	50.0	6,630	8,410	2,850	2,810	8,910
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			83803.10	83803.11	83803.12	83803.13	83803.14
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		112	228 S6	90.4	128	84.8
Tetrachloro-m-xylene	30-150		80.2	114	135	113	103

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

666 Dyer Road Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60488883

Project Name: ITT Dyer Road

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

	·	QO Daten N	0. 0004 TOWID TD		
Our Lab I.D.			83803.15		
Client Sample I.D.			SB-232-0.05		
Date Sampled			08/03/2016		
Date Prepared			08/04/2016		
Preparation Method			3540C		
Date Analyzed			08/05/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	44,300		
Aroclor-1254 (PCB-1254)	25.0	50.0	56,600		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			83803.15		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		133		
Tetrachloro-m-xylene	30-150		98.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 60488883

Project Name: ITT Dyer Road

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC BAICH NO. 0004 TOMB IA									
Our Lab I.D.			Method Blank	83803.16					
Client Sample I.D.				SB-182-0.5					
Date Sampled				08/03/2016					
Date Prepared			08/04/2016	08/04/2016					
Preparation Method			3540C	3540C					
Date Analyzed			08/05/2016	08/05/2016					
Matrix			Soil	Soil					
Units			ug/Kg	ug/Kg					
Dilution Factor			1	1					
Analytes	MDL	PQL	Results	Results					
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND					
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND					
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND					
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND					
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND					
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND					
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND					
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND					
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND					
Our Lab I.D.			Method Blank	83803.16					
Surrogates	%Rec.Limit		% Rec.	% Rec.					
Decachlorobiphenyl	30-150		1272	1272 S6					
Tetrachloro-m-xylene	30-150		102	102					

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 666 Dyer Road

Santa Ana, CA 92705

83803

AETL Job Number Submitted Client

08/03/2016

AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch No	o: 080416MB2A				
Our Lab I.D.			Method Blank	83803.18	83803.19	83803.21	83803.23
Client Sample I.D.				SB-205-0.5	SB-205-0.5a	SB-206-0.5	SB-210-0.5
Date Sampled				08/03/2016	08/03/2016	08/03/2016	08/03/2016
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/08/2016	08/05/2016	08/08/2016	08/08/2016	08/08/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	ND	ND	31.0J
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			Method Blank	83803.18	83803.19	83803.21	83803.23
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		108	75.2	116	96.0	107
Tetrachloro-m-xylene	30-150		130	137	144	112	139

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 080416MB2A

Our Lab I.D.			83803.25	83803.27	83803.29	
Client Sample I.D.			SB-207-0.5	SB-173-0.5	SB-215-0.5	
Date Sampled				08/03/2016	1 1	
Date Prepared			1	08/04/2016	08/04/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			08/08/2016	08/08/2016	08/08/2016	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	212	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	98.5	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			83803.25	83803.27	83803.29	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		115	103	95.6	
Tetrachloro-m-xylene	30-150		116	123	131	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 666 Dyer Road

Santa Ana, CA 92705

83803

AETL Job Number Submitted Client

08/03/2016

AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC BALCH NO: U0U410MD2D										
Our Lab I.D.			Method Blank	83803.31	83803.32	83803.33				
Client Sample I.D.				SB-231-0.05	SB-234-0.05	SB-228-0.05				
Date Sampled				08/03/2016	08/03/2016	08/03/2016				
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016				
Preparation Method			3540C	3540C	3540C	3540C				
Date Analyzed			08/08/2016	08/08/2016	08/08/2016	08/08/2016				
Matrix			Solid	Solid	Solid	Solid				
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	·			
Dilution Factor			1	1	1	1				
Analytes	MDL	PQL	Results	Results	Results	Results				
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	23,900	8,860	ND				
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	11,900	7,360	1,760				
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND				
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND				
Our Lab I.D.			Method Blank	83803.31	83803.32	83803.33				
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.				
Decachlorobiphenyl	30-150		101	101	94.4	142				
Tetrachloro-m-xylene	30-150		111	111	88.6	119				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii N	0: 000416WIDZD		
Our Lab I.D.			83803.34		
Client Sample I.D.			SB-229-0.05		
Date Sampled			08/03/2016		
Date Prepared			08/04/2016		
Preparation Method			3540C		
Date Analyzed			08/08/2016		
Matrix			Solid		
	Units		ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	22,300		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83803.34		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		115		
Tetrachloro-m-xylene	30-150		67.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

666 Dyer Road Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60488883

Project Name: ITT Dyer Road

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Duton no					
Our Lab I.D.			83803.35	83803.36	83803.37	83803.38	83803.39
Client Sample I.D.			SB-239-0.05	SB-236-0.05	SB-240-0.05	SB-237-0.05	SB-242-0.05
Date Sampled			08/03/2016	08/03/2016	08/03/2016	08/03/2016	08/03/2016
Date Prepared			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/08/2016	08/08/2016	08/08/2016	08/08/2016	08/08/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	2,840	ND	26,100	ND	ND
Aroclor-1254 (PCB-1254)	25.0	50.0	11,900	ND	8,750	850	3,080
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			83803.35	83803.36	83803.37	83803.38	83803.39
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		117	183 S6	105	126	72.4
Tetrachloro-m-xylene	30-150		138	268 56	76.6	111	110

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 12

Project ID: 60488883

Project Name: ITT Dyer Road

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch N	0: U0U416WIDZD			
Our Lab I.D.			83803.40	83803.41		
Client Sample I.D.			SB-241-0.05	SB-244-0.05		
Date Sampled	Date Sampled		08/03/2016	08/03/2016		
Date Prepared			08/04/2016	08/04/2016		
Preparation Method			3540C	3540C		
Date Analyzed			08/08/2016	08/08/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	2,230		
Aroclor-1254 (PCB-1254)	25.0	50.0	55,400	843		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			83803.40	83803.41		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		145	125		
Tetrachloro-m-xylene	30-150		141	140	 	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83803 08/03/2016 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 081016MB1

Our Lab I.D.			Method Blank	83803.42		
Client Sample I.D.				EB-080316		
Date Sampled				08/03/2016		
Date Prepared			08/10/2016	08/10/2016		
Preparation Method			3510C	3510C		
Date Analyzed			08/11/2016	08/11/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	83803.42		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		120	109		
Tetrachloro-m-xylene	75-125		118	101		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 14

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1260 (PCB-1260)	0.00	5.00	5.02	100	5.00	4.29	85.8	15.3	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	1.00	1.19	119	1.00	1.15	115	3.36	75-125	<20
Tetrachloro-m-xylene	0.00	1.00	0.950	95.0	1.00	0.821	82.1	13.6	75-125	<20

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	6.15	123	75-125			
Surrogates							
Decachlorobiphenyl	1.00	1.20	120	75-125			
Tetrachloro-m-xylene	1.00	0.888	88.8	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 15

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080416MB1A; Dup or Spiked Sample: 83803.04; LCS: Clean Sand; QC Prepared: 08/04/2016; QC Analyzed: 08/05/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	400	80.0	500	478	95.6	17.8	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	439	87.8	500	530	106	18.8	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	43.5	87.0	50.0	53.5	107	20.6	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	46.5	93.0	50.0	57.0	114	20.3	30-150	<20

QC Batch No: 080416MB1A; Dup or Spiked Sample: 83803.04; LCS: Clean Sand; QC Prepared: 08/04/2016; QC Analyzed: 08/05/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	334	66.8	500	358	71.6	6.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	324	64.8	500	380	76.0	15.9	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	62.8	126	50.0	55.3	111	12.7	30-150	<20	
Tetrachloro-m-xylene	50.0	51.2	102	50.0	59.3	119	15.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **16**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080416MB2A; Dup or Spiked Sample: 83803.27; LCS: Clean Sand; QC Prepared: 08/04/2016; QC Analyzed: 08/08/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	684	137	500	591	118	14.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	578	116	500	495	99.0	15.8	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	59.6	119	50.0	60.5	121	1.68	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	69.9	140	50.0	71.8	144	2.86	30-150	<20

QC Batch No: 080416MB2A; Dup or Spiked Sample: 83803.27; LCS: Clean Sand; QC Prepared: 08/04/2016; QC Analyzed: 08/08/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	401	80.2	500	345	69.0	15.0	50-150	<20	
Aroclor-1260 (PCB-1260)	500	437	87.4	500	400	80.0	8.84	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	57.2	114	50.0	67.1	134	17.5	30-150	<20	
Tetrachloro-m-xylene	50.0	61.1	122	50.0	62.9	126	3.28	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 17

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080416MB1B; Dup or Spiked Sample: 83803.04; LCS: Blank; QC Prepared: 08/04/2016; QC Analyzed: 08/05/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	400	80.0	500	478	95.6	17.8	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	439	87.8	500	530	106	18.8	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	43.5	87.0	50.0	53.5	107	20.6	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	46.5	93.0	50.0	57.0	114	20.3	30-150	<20

QC Batch No: 080416MB1B; Dup or Spiked Sample: 83803.04; LCS: Blank; QC Prepared: 08/04/2016; QC Analyzed: 08/05/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	334	66.8	500	358	71.6	6.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	324	64.8	500	380	76.0	15.9	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	62.8	126	50.0	55.3	111	12.7	30-150	<20	
Tetrachloro-m-xylene	50.0	51.2	102	50.0	59.3	119	15.4	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 18

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83803	08/03/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080416MB2B; Dup or Spiked Sample: 83803.27; LCS: Blank; QC Prepared: 08/04/2016; QC Analyzed: 08/08/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	684	137	500	591	118	14.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	578	116	500	495	99.0	15.8	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	59.6	119	50.0	60.5	121	1.68	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	69.9	140	50.0	71.8	144	2.86	30-150	<20

QC Batch No: 080416MB2B; Dup or Spiked Sample: 83803.27; LCS: Blank; QC Prepared: 08/04/2016; QC Analyzed: 08/08/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	401	80.2	500	345	69.0	15.0	50-150	<20	
Aroclor-1260 (PCB-1260)	500	437	87.4	500	400	80.0	8.84	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	57.2	114	50.0	67.1	134	17.5	30-150	<20	
Tetrachloro-m-xylene	50.0	61.1	122	50.0	62.9	126	3.28	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 18

Date Received 08/04/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83817	08/04/2016	AECOM

Project ID: 60488883

Project Name: ITT DYER ROAD site: 666 Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 24 solid and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

89456 oi Z

AETL-JOB No. 83817

TEST INSTRUCTIONS & COMMENTS USE EXTRACTION Page / of & က် 34500 RELINQUISHED BY: METHOD LABORATOR Time: ANALYSIS REQUESTED inted Name つして *CS08* PCBS X X X X X X PROJECT MANAGER CHICLS CAVERS PRES. DYER ROAD BUGGG TOUNTERN 951.233.4812 Printed Nar NUMBER/SIZE 402 SAR CONTAINER DATA DELIVERABLE REQUIRED **ABORATORY** Concrete MATRIX SANTA ANAS GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) AN / N / SAMPLES INTACT Y/ N/-NA SAMPLES ACCEPTED Y TIME 0807 0935 1236 0000 0834 9069 9460 988 247 IT DYER ROMP 60488883 0857 P2P0 1023 813 ho 1051 PROPERLY COOLED SAMPLE RECEIPT - TO BE FILLED BY HARD COPY 8/4/16 PUARO GOOD DYER ROAD DATE SAME DAY ITT DYER SB-246-0.05 83317.02 SB-058-0:05 83813.06 513-256-0.0583817.12 5B-249-0-0-83817-10 33813-15 53-362-00133117.08 58-263-6.05 83817.09 58-255-0.05 33817-13 41-41888 33817-14 SB-259-0.05 83817.05 5B-245-0.05 33817.01 SB-247-0-05 83817.03 58-260-0.05 83817.04 SB-257-0-6 83817-39 5B-248-0.05 92813.11 LAB ID TURN AROUND TIME **FOTAL NUMBER OF CONTAINERS** RECEIVED IN GOOD COND. Y M RUSH AECOM CUSTODY SEALS Y/N/NA SB-253-6.05 COMPANY ADDRESS SAMPLE ID NORMAL PROJECT NAME SITE NAME AND ADDRESS

80

3,

Date

Time:

Time: 15 36

5/3

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

Nº 94721

SH ANTRACTION TEST INSTRUCTIONS & COMMENTS ine: 1815 taude S/8/19/1/9/18/2018/ Page 2 of 2 AE76-3. က 34500 METHOD RELINQUISHED BY: LABORATO AETL JOB No. 8387 **ANALYSIS REQUESTED** PCBS PROJECT MANAGER CHIKIS CAVERS PRES. 7184-852 129 x81-7 TT DYER ROAD SANTA ANA PROJECT # 66488833 SAMPL 3AR 402 **る場** NUMBER/SIZE CONTAINER 1 AMBER DATA DELIVERABLE REQUIRED SAMPLE RECEIP**T** - TO BE FILLED BY LARORATORY CONCREC NA PER MATRIX # Od GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) SAMPLES INTACT W/ N ANA SAMPLES ACCEPTED Y 1503 1367 2741 1319 1450 TIME 1327 1400 1335 350 1401 PROPERLY COOLED HARD COPY DYCR ROAD 666 DYER ROAD ٥ DATE 999 TOUN & CONNTRY PROJECT NAME SAME DAY
NEXT DAY
2 DAYS
3 DAYS 58-219-0.0583813.20 58-30-n.d.83817.2 EB-080416 83817.16 513-251-0.0733217.13 SB-261-00583817.19 59-272-0.05 83813.25 53-218-0-0733817.21 5B-266-0.0T 83817.24 58-265-0.05 83813.43 SB-252-0.05|83817-13 LAB ID **FURN AROUND TIME** RECEIVED IN GOOD COND. YN TOTAL NUMBER OF CONTAINERS AECO M RUSH CUSTODY SEALS Y(/ N) NA COMPANY ADDRESS SAMPLE ID NORMAL SITE NAME AND COMPANY ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELL 6W - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 08/04/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83817	08/04/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 25 samples with the following specification on 08/04/2016.

Lab ID	Sample ID	Sample Date	Matrix			Quantity	Of Containers
83817.16	EB-080416	08/04/2016	Aqueou	S			1
Method	^ Submethod	Req Da	ate P	riority	TAT	Unit	3
8082		08/11/2	016	2	Normal	ug/L	
Lab ID	Sample ID	Sample Date	Matrix			Quantity	Of Containers
83817.01	SB-245-0.05	08/04/2016	Solid				1
83817.02	SB-246-0.05	08/04/2016	Solid				1
83817.03	SB-247-0.05	08/04/2016	Solid				1
83817.04	SB-260-0.05	08/04/2016	Solid				1
83817.05	SB-259-0.05	08/04/2016	Solid				1
83817.06	SB-258-0.05	08/04/2016	Solid				1
83817.07	SB-257-0.05	08/04/2016	Solid				1
83817.08	SB-262-0.05	08/04/2016	Solid				1
83817.09	SB-263-0.05	08/04/2016	Solid				1
83817.10	SB-249-0.05	08/04/2016	Solid				1
83817.11	SB-248-0.05	08/04/2016	Solid				1
83817.12	SB-256-0.05	08/04/2016	Solid				1
83817.13	SB-255-0.05	08/04/2016	Solid				1
83817.14	SB-254-0.05	08/04/2016	Solid				1
83817.15	SB-253-0.05	08/04/2016	Solid				1
83817.17	SB-252-0.05	08/04/2016	Solid				1
83817.18	SB-251-0.05	08/04/2016	Solid				1
83817.19	SB-261-0.05	08/04/2016	Solid				1
83817.20	SB-219-0.05	08/04/2016	Solid				1
83817.21	SB-218-0.05	08/04/2016	Solid				1
83817.22	SB-220-0.05	08/04/2016	Solid				1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740
Attention: Chris Cavers

Project ID: 60488883

Date Received 08/04/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83817	08/04/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

83817.23	SB-265-0.05	08/04/2016	Solid	1
83817.24	SB-266-0.05	08/04/2016	Solid	1
83817.25	SB-272-0.05	08/04/2016	Solid	1

Method ^ Submethod	Req Date	Priority	TAT	Units	
(8082)	08/11/2016	2	Normal	ug/Kg	

The samples were analyzed as specified on the enclosed chain of custody. Analytical non-conformances have been noted on the report.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT DYER ROAD

Site 666 Dyer Road

Santa Ana, CA 92705

	AETL Job Number	Submitted	Client
Γ	83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 080816MB1

QC BAIGH NO: U000 TOMB I										
Our Lab I.D.			Method Blank							
Client Sample I.D.										
Date Sampled										
Date Prepared			08/08/2016							
Preparation Method			3540C							
Date Analyzed			08/09/2016							
Matrix			Solid							
Units			ug/Kg							
Dilution Factor			1							
Analytes	MDL	PQL	Results							
Aroclor-1016 (PCB-1016)	25.0	50.0	ND							
Aroclor-1221 (PCB-1221)	25.0	50.0	ND							
Aroclor-1232 (PCB-1232)	25.0	50.0	ND							
Aroclor-1242 (PCB-1242)	25.0	50.0	ND							
Aroclor-1248 (PCB-1248)	25.0	50.0	ND							
Aroclor-1254 (PCB-1254)	25.0	50.0	ND							
Aroclor-1260 (PCB-1260)	25.0	50.0	ND							
Aroclor-1262 (PCB-1262)	25.0	50.0	ND							
Aroclor-1268 (PCB-1268)	25.0	50.0	ND							
Our Lab I.D.			Method Blank							
Surrogates	%Rec.Limit		% Rec.							
Decachlorobiphenyl	30-150		75.8							
Tetrachloro-m-xylene	30-150		43.2							

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

	40 24.0					
		83817.01				
		SB-245-0.05				
		08/04/2016				
		08/08/2016				
		3540C				
		08/09/2016				
		Solid				
		ug/Kg				
		10				
MDL	PQL	Results				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	ND				
250	500	37,600				
250	500	7,270				
250	500	ND				
250	500	ND				
250	500	ND				
		83817.01				
%Rec.Limit		% Rec.				
30-150		6902 S6				
30-150		97.4				
	250 250 250 250 250 250 250 250 250 250	MDL PQL 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500 250 500	SB-245-0.05 08/04/2016 08/08/2016 3540C 08/09/2016 Solid ug/Kg 10 MDL	83817.01 SB-245-0.05 08/04/2016 08/08/2016 08/08/2016 3540C 08/09/2016 Solid ug/Kg 10 Results 250 500 ND 250 500 ND 250 500 ND 250 500 ND 250 500 37,600 250 500 7,270 250 500 ND 250 S00 S00 ND 250 S00 S00	83817.01 SB-245-0.05 08/04/2016 08/08/2016 3540C 08/09/2016 Solid ug/Kg 10	83817.01 SB-245-0.05 O8/04/2016 O8/08/2016 O8/08/2016 O8/09/2016 O8/0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 4

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		83817.02	83817.03			
		SB-246-0.05	SB-247-0.05			
		08/04/2016	08/04/2016			
		08/08/2016	08/08/2016			
		3540C	3540C			
		08/09/2016	08/09/2016			
		Solid	Solid			
		ug/Kg	ug/Kg			
		5	5			
MDL	PQL	Results	Results			
125	250	ND	ND			
125	250	ND	ND			
125	250	ND	ND			
125	250	ND	ND			
125	250	ND	ND			
125	250	369	17,600			
125	250	ND	ND			
125	250	ND	ND			
125	250	ND	ND			
		83817.02	83817.03			
%Rec.Limit		% Rec.	% Rec.			
30-150		95.8	119			
30-150		69.0	88.4			
	125 125 125 125 125 125 125 125 125 125	125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250	SB-246-0.05 08/04/2016 08/08/2016 3540C 08/09/2016 Solid ug/Kg 5 MDL PQL Results 125 250 ND	SB-246-0.05 SB-247-0.05 08/04/2016 08/04/2016 08/08/2016 08/08/2016 3540C 3540C 08/09/2016 08/09/2016 Solid Solid ug/Kg ug/Kg 5 5 MDL PQL Results Results 125 250 ND ND 83817.03 %Rec.Limit % Rec. % Rec.	SB-246-0.05 SB-247-0.05 08/04/2016 08/04/2016 08/08/2016 08/08/2016 3540C 3540C 08/09/2016 08/09/2016 Solid Solid ug/Kg ug/Kg 5 5 MDL PQL Results Results 125 250 ND ND 83817.02 83817.03 %Rec.Limit % Rec. % Rec.	SB-246-0.05 SB-247-0.05 08/04/2016 08/04/2016 08/08/2016 08/08/2016 3540C 3540C 08/09/2016 08/09/2016 Solid Solid ug/Kg ug/Kg 5 5 MDL PQL Results Results 125 250 ND ND 126 83817.03 %Rec.Limit % Rec. % Rec.

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60488883

Project Name: ITT DYER ROAD

Site 666 Dyer Road

Santa Ana, CA 92705

	AETL Job Number	Submitted	Client
Γ	83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii N	10: 0000 TOWID T				
Our Lab I.D.			83817.04	83817.05	83817.06	83817.07	83817.08
Client Sample I.D.			SB-260-0.05	SB-259-0.05	SB-258-0.05	SB-257-0.05	SB-262-0.05
Date Sampled			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Date Prepared			08/08/2016	08/08/2016	08/08/2016	08/08/2016	08/08/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/09/2016	08/09/2016	08/09/2016	08/09/2016	08/09/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	4,350	10,700	ND	ND	24,500
Aroclor-1254 (PCB-1254)	25.0	50.0	1,890	6,950	26,000	50,400	8,910
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			83817.04	83817.05	83817.06	83817.07	83817.08
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		144	95.8	112	126	84.2
Tetrachloro-m-xylene	30-150		140	111	78.2	89.2	90.2

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	io: 080816MB1				
Our Lab I.D.			83817.09	83817.10	83817.11	83817.12	83817.13
Client Sample I.D.			SB-263-0.05	SB-249-0.05	SB-248-0.05	SB-256-0.05	SB-255-0.05
Date Sampled			08/04/2016	08/04/2016	08/04/2016	08/04/2016	08/04/2016
Date Prepared			08/08/2016	08/08/2016	08/08/2016	08/08/2016	08/08/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			08/09/2016	08/09/2016	08/09/2016	08/09/2016	08/09/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	50,900	ND	6,350	4,030	4,340
Aroclor-1254 (PCB-1254)	25.0	50.0	14,400	16,700	5,240	2,320	1,170
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			83817.09	83817.10	83817.11	83817.12	83817.13
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		72.2	127	145	95.8	95.6
Tetrachloro-m-xylene	30-150		86.6	113	97.2	69.4	81.2

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60488883

Project Name: ITT DYER ROAD

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	NO: 0000 101VID 1		
Our Lab I.D.			83817.14		
Client Sample I.D.			SB-254-0.05		
Date Sampled			08/04/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	250	500	ND		
Aroclor-1221 (PCB-1221)	250	500	ND		
Aroclor-1232 (PCB-1232)	250	500	ND		
Aroclor-1242 (PCB-1242)	250	500	ND		
Aroclor-1248 (PCB-1248)	250	500	12,800		
Aroclor-1254 (PCB-1254)	250	500	6,350		
Aroclor-1260 (PCB-1260)	250	500	ND		
Aroclor-1262 (PCB-1262)	250	500	ND		
Aroclor-1268 (PCB-1268)	250	500	ND		
Our Lab I.D.			83817.14		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		6960 S6		
Tetrachloro-m-xylene	30-150		920 S6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 60488883

Project Name: ITT DYER ROAD 666 Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	NO: UOUO TOIVID I		
Our Lab I.D.			83817.15		
Client Sample I.D.			SB-253-0.05		
Date Sampled			08/04/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	15,000		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83817.15		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		110		
Tetrachloro-m-xylene	30-150		129		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Attn:

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Chris Cavers

Page: 9 Project ID: 60488883

Project Name: ITT DYER ROAD 666 Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client 83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Dateir i	40. 0000 TOWID I			
Our Lab I.D.			83817.17	83817.18		
Client Sample I.D.			SB-252-0.05	SB-251-0.05		
Date Sampled			08/04/2016	08/04/2016		
Date Prepared			08/08/2016	08/08/2016		
Preparation Method			3540C	3540C		
Date Analyzed			08/09/2016	08/09/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	9,750	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND		
Our Lab I.D.			83817.17	83817.18		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		104	121		
Tetrachloro-m-xylene	30-150		125	81.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch r	10: 080816MB1		
Our Lab I.D.			83817.19		
Client Sample I.D.			SB-261-0.05		
Date Sampled			08/04/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	4,730		
Aroclor-1254 (PCB-1254)	125	250	2,020		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83817.19		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		81.8		
Tetrachloro-m-xylene	30-150		93.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	10: 0000 1 DIVID 1		
Our Lab I.D.			83817.20		
Client Sample I.D.			SB-219-0.05		
Date Sampled			08/04/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	250	500	ND		
Aroclor-1221 (PCB-1221)	250	500	ND		
Aroclor-1232 (PCB-1232)	250	500	ND		
Aroclor-1242 (PCB-1242)	250	500	ND		
Aroclor-1248 (PCB-1248)	250	500	ND		
Aroclor-1254 (PCB-1254)	250	500	ND		
Aroclor-1260 (PCB-1260)	250	500	ND		
Aroclor-1262 (PCB-1262)	250	500	ND		
Aroclor-1268 (PCB-1268)	250	500	ND		
Our Lab I.D.			83817.20		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		101		
Tetrachloro-m-xylene	30-150		97.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 12

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080816MB2 Our Lab I.D. Method Blank Client Sample I.D. Date Sampled 08/08/2016 Date Prepared Preparation Method 3540C 08/09/2016 Date Analyzed Matrix Solid Units ug/Kg Dilution Factor Analytes Results MDL **PQL** Aroclor-1016 (PCB-1016) 25.0 50.0 ND 25.0 50.0 Aroclor-1221 (PCB-1221) ND 50.0 Aroclor-1232 (PCB-1232) 25.0 ND Aroclor-1242 (PCB-1242) 25.0 50.0 ND Aroclor-1248 (PCB-1248) 25.0 50.0 ND Aroclor-1254 (PCB-1254) 25.0 50.0 ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND Our Lab I.D. Method Blank Surrogates %Rec.Limit % Rec. 30-150 96.8 Decachlorobiphenyl Tetrachloro-m-xylene 30-150 61.6

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 13

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 080816MB2

			10. 0000 TOMB2		
Our Lab I.D.			83817.21		
Client Sample I.D.			SB-218-0.05		
Date Sampled			08/04/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	ND		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83817.21		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		99.6		
Tetrachloro-m-xylene	30-150		114		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **14**

Project ID: 60488883

Project Name: ITT DYER ROAD

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Datch N	0: U0U016WID2				
Our Lab I.D.			83817.22	83817.23	83817.24	83817.25	
Client Sample I.D.			SB-220-0.05	SB-265-0.05	SB-266-0.05	SB-272-0.05	
Date Sampled			08/04/2016	08/04/2016	08/04/2016	08/04/2016	
Date Prepared			08/08/2016	08/08/2016	08/08/2016	08/08/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			08/09/2016	08/09/2016	08/09/2016	08/09/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	837	2,200	3,060	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	298	1,540	1,450	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			83817.22	83817.23	83817.24	83817.25	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		90.8	101	119	82.2	
Tetrachloro-m-xylene	30-150		93.8	130	105	80.8	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

999 W. Town and Country Road

Orange, CA 92868-4713

AECOM Environment

Telephone: (714)973-9740 Attn: Chris Cavers Page: 15

Project ID: 60488883

Project Name: ITT DYER ROAD

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83817 08/04/2016 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 081016MB1

Our Lab I.D.			Method Blank	83817.16		
Client Sample I.D.				EB-080416		
Date Sampled				08/04/2016		
Date Prepared			08/10/2016	08/10/2016		
Preparation Method			3510C	3510C		
Date Analyzed			08/11/2016	08/11/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	83817.16		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		120	96.7		
Tetrachloro-m-xylene	75-125		118	88.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **16**

Project ID: 60488883

Project Name: ITT DYER ROAD

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1260 (PCB-1260)	0.00	5.00	5.02	100	5.00	4.29	85.8	15.3	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	1.00	1.19	119	1.00	1.15	115	3.36	75-125	<20
Tetrachloro-m-xylene	0.00	1.00	0.950	95.0	1.00	0.821	82.1	13.6	75-125	<20

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	6.15	123	75-125			
Surrogates							
Decachlorobiphenyl	1.00	1.20	120	75-125			
Tetrachloro-m-xylene	1.00	0.888	88.8	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 17

Project ID: 60488883

Project Name: ITT DYER ROAD

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080816MB1; Dup or Spiked Sample: 83817.04; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	1,640 M	328	500	1,540 M	308	6.29	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	1,100 M	220	500	885 M	177	21.7	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	45.4	90.8	50.0	45.5	91.0	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	52.1	104	50.0	58.6	117	12.5	30-150	<20

QC Batch No: 080816MB1; Dup or Spiked Sample: 83817.04; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	341	68.2	500	324	64.8	5.11	50-150	<20	
Aroclor-1260 (PCB-1260)	500	419	83.8	500	430	86.0	2.59	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	42.2	84.4	50.0	44.9	89.8	6.40	30-150	<20	
Tetrachloro-m-xylene	50.0	43.4	86.8	50.0	43.2	86.4	<1	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 18

Project ID: 60488883

Project Name: ITT DYER ROAD

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83817	08/04/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080816MB2; Dup or Spiked Sample: 83817.25; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	725	145	500	735	147	1.37	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	655	131	500	659	132	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	43.6	87.2	50.0	38.4	76.8	11.9	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	56.6	113	50.0	42.0	84.0	25.7	30-150	<20

QC Batch No: 080816MB2; Dup or Spiked Sample: 83817.25; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	424	84.8	500	337	67.4	22.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	540	108	500	432	86.4	22.2	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	34.7	69.4	50.0	52.1	104	49.9	30-150	<20	
Tetrachloro-m-xylene	50.0	46.2	92.4	50.0	48.3	96.6	4.55	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Number of Pages 12

Date Received 08/05/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83828	08/05/2016	AECOM

Project ID: 60488883

Project Name: ITT Dyer Road Site: 666 Dyer Road

Santa Ana, CA 92705

Enclosed please find results of analyses of 14 solid and 1 water samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

American Environmental Testing Laboratory Inc.

CHAIN OF CUSTODY RECORD Nº 91688

AETL JOB NO. 83828 2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com PROJECT MANAGER

ı			ムへとつこと	
COMPANY	PROJECT MANAGER	AETL JOB No.	820~0	Page(of
COMPANY ADDRESS	PHONE	NANA	ANALYSIS REQUIESTED	
202	Town & Campy FAX			TEST INSTRUCTIONS & COMMENTS
PROJECT NAME TIT ONLY	Row GOUSKES	7		1 2
SITE NAME 999 TOWN &	Carata RI	80		いめ、な 大 を よ ら の に に に に に に に に に に に に に
RESS	J I	8 3		method 3450
SAMPLE ID LAB ID	DATE TIME MATRIX CONTAINER NUMBER/SIZE	ER PRES.		
SB-269-205 8/	8/5/4 BOT CORING US.	٧.		82828.01
2 SB-268-0.05	2818			83828.02
513-267-0.05	0833			83828,03
\$00-000 J	Quot			83828.04
36-254-890es	6923			83828.05
36-22-0x	9888			83828.06
28-271-0-35	20045			83838.07
5/2-77-00x	C4.56 ->			83828.08
\$4 2000 ERL 010516	12 on Bagget brusher			83838.09
\$0.274-0.05	1009 congrek			83828.10
\$2-c13-0·05				83828. 11
20-012-US 21	1033			83828. 19
13 58-224-0.05	1 IIK			83828. 13
28-00 5	701			83828.14
३०१-५०६४ ।	4 9501 4	A		83828. 15
SAMPLE RECEIPT - TO BE	BE FILLED BY LABORATORY	RELINQUISHED BY 1.	RELINQUISHED BY: 2.	RELINQUISHED BY: 3.
TOTAL NUMBER OF CONTAINERS	PROPERLY COOLED (Y N / NA	Signature:	Signature:	Signature:
CUSTODY SEALS Y/N/NA	SAMPLES INTACT XLN / NA	Printed Name: David Fee	Printed Name:	Printed Part Moo
RECEIVED IN GOOD COND (Y) N	SAMPLES ACCEPTED (Y)N	1 ≔	Date: Time:	Dags / S/16 Time: 1,20
TURN AROUND TIME	DATA DELIVERABLE REQUIRED	RECEIVED BY: 1.	RECEIVED BY: 2.	RECEIVED BY ACT 3.
A NORMAL RUSH SAME DAY	☐ HARD COPY	Signature: cne.	Signature:	Signature:
	GEOTRACKER (GLOBAL ID)	MUZOLI PA	Printed Name:	Phyted Martie:
		ンたに	Date: Time:	Part Time: 1100

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attention: Chris Cavers Project ID: 60488883

Date Received 08/05/2016
Date Reported 08/19/2016

Job Number	Order Date	Client
83828	08/05/2016	AECOM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 15 samples with the following specification on 08/05/2016.

Lab ID	Sample ID	Sample Date	Matri	x		Quantity (of Containers
83828.09	EB1-080516	08/05/2016	Aquec	ous		1	-
Method	^ Submethod	Req Da	ate	Priority	TAT	Units	
8082		08/12/2	016	2	Normal	ug/L	
Lab ID	Sample ID	Sample Date	Matri	x		Quantity (of Containers
83828.01	SB-269-0.05	08/05/2016	Solid	l		1	-
83828.02	SB-268-0.05	08/05/2016	Solid	l		1	-
83828.03	SB-267-0.05	08/05/2016	Solid	l		1	-
83828.04	SB-230-0.05	08/05/2016	Solid	l		1	-
83828.05	SB-264-0.05	08/05/2016	Solid	l		1	-
83828.06	SB-227-0.05	08/05/2016	Solid	l		1	-
83828.07	SB-271-0.05	08/05/2016	Solid	L		1	-
83828.08	SB-275-0.05	08/05/2016	Solid	l		1	-
83828.10	SB-274-0.05	08/05/2016	Solid	l		1	-
83828.11	SB-273-0.05	08/05/2016	Solid	L		1	-
83828.12	SB-270-0.05	08/05/2016	Solid	l		1	-
83828.13	SB-224-0.05	08/05/2016	Solid	l		1	-
83828.14	SB-238-0.05	08/05/2016	Solid	l		1	-
83828.15	SB-243-0.05	08/05/2016	Solid	l		1	-
Method	^ Submethod	Req Da	ate	Priority	TAT	Units	
(8082)		08/12/2	016	2	Normal	ug/Kg	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

	1		C. Raymana
Checked By:		Approved By:	3

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **2**

Project ID: 60488883

Project Name: ITT Dyer Road

Site 666 Dver I

666 Dyer Road

Santa Ana, CA 92705

	AETL Job Number	Submitted	Client
I	83828	08/05/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 080816MB2

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			08/08/2016		
Preparation Method Date Analyzed Matrix Units			3540C		
			08/09/2016		
			Solid		
			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		96.8		
Tetrachloro-m-xylene	30-150		61.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **3**

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii i	NO: U8U816MB2		
Our Lab I.D.			83828.01		
Client Sample I.D.			SB-269-0.05		
Date Sampled			08/05/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	2,300		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83828.01		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		85.8		
Tetrachloro-m-xylene	30-150		66.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Chris Cavers Attn: Page:

Project ID: 60488883

Project Name: ITT Dyer Road Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83828	08/05/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 080816MB2

Our Lab I.D.			83828.02	83828.03	83828.04	
Client Sample I.D.			SB-268-0.05	SB-267-0.05	SB-230-0.05	
Date Sampled				08/05/2016	08/05/2016	
				08/03/2016	08/03/2016	
Date Prepared			1			
Preparation Method			3540C	3540C	3540C	
Date Analyzed				08/09/2016	08/09/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	8,190	1,640	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	3,990	492	13,600	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			83828.02	83828.03	83828.04	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		8178 S6	77.6	70.8	
Tetrachloro-m-xylene	30-150		92.6	107	78.4	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

666 Dyer Road Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: 5

Project ID: 60488883

Project Name: ITT Dyer Road

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daten i	10. 0000 TOWID2			
Our Lab I.D.			83828.05	83828.06		
Client Sample I.D.			SB-264-0.05	SB-227-0.05		
Date Sampled			08/05/2016	08/05/2016		
Date Prepared			08/08/2016	08/08/2016		
Preparation Method			3540C	3540C		
Date Analyzed			08/09/2016	08/09/2016		
Matrix			Solid	Solid		
Units			ug/Kg	ug/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	125	250	ND	ND		
Aroclor-1221 (PCB-1221)	125	250	ND	ND		
Aroclor-1232 (PCB-1232)	125	250	ND	ND		
Aroclor-1242 (PCB-1242)	125	250	ND	ND		
Aroclor-1248 (PCB-1248)	125	250	2,160	ND		
Aroclor-1254 (PCB-1254)	125	250	946	24,600		
Aroclor-1260 (PCB-1260)	125	250	ND	ND		
Aroclor-1262 (PCB-1262)	125	250	ND	ND		
Aroclor-1268 (PCB-1268)	125	250	ND	ND		
Our Lab I.D.			83828.05	83828.06		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		148	127		
Tetrachloro-m-xylene	30-150		104	86.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 6

Project ID: 60488883

Project Name: ITT Dyer Road

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii N	0: 0000 TOWID2			
Our Lab I.D.			83828.07	83828.08	83828.10	
Client Sample I.D.			SB-271-0.05	SB-275-0.05	SB-274-0.05	
Date Sampled			08/05/2016	08/05/2016	08/05/2016	
Date Prepared			08/08/2016	08/08/2016	08/08/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			08/09/2016	08/10/2016	08/10/2016	
Matrix			Solid	Solid	Solid	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	2,440	ND	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	1,200	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	
Our Lab I.D.			83828.07	83828.08	83828.10	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		125	69.0	84.2	
Tetrachloro-m-xylene	30-150		65.0	88.2	118	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

666 Dyer Road Santa Ana, CA 92705

Telephone: (714)973-9740 Attn: Chris Cavers Page: **7**

Project ID: 60488883

Project Name: ITT Dyer Road

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii i	10: U0U0 10WIDZ		
Our Lab I.D.			83828.11		
Client Sample I.D.			SB-273-0.05		
Date Sampled	Date Sampled		08/05/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor	Dilution Factor		5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	ND		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83828.11		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		73.0		
Tetrachloro-m-xylene	30-150		89.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 8

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC BAICH NO: UOUG TOWID2									
Our Lab I.D.			83828.12	83828.13	83828.14				
Client Sample I.D.			SB-270-0.05	SB-224-0.05	SB-238-0.05				
Date Sampled			08/05/2016	08/05/2016	08/05/2016				
Date Prepared			08/08/2016	08/08/2016	08/08/2016				
Preparation Method			3540C	3540C	3540C				
Date Analyzed			08/09/2016	08/10/2016	08/09/2016				
Matrix			Solid	Solid	Solid				
Units			ug/Kg	ug/Kg	ug/Kg				
Dilution Factor			1	1	1				
Analytes	MDL	PQL	Results	Results	Results				
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND				
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND				
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND				
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND				
Aroclor-1248 (PCB-1248)	25.0	50.0	924	ND	ND				
Aroclor-1254 (PCB-1254)	25.0	50.0	581	180	144				
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND				
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND				
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND				
Our Lab I.D.			83828.12	83828.13	83828.14				
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.				
Decachlorobiphenyl	30-150		96.0	77.0	75.8				
Tetrachloro-m-xylene	30-150		61.6	93.4	98.6				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **9**

Project ID: 60488883

Project Name: ITT Dyer Road

666 Dyer Road Santa Ana, CA 92705

Site

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daton i	40. 0000 TOWID2		
Our Lab I.D.			83828.15		
Client Sample I.D.			SB-243-0.05		
Date Sampled			08/05/2016		
Date Prepared			08/08/2016		
Preparation Method			3540C		
Date Analyzed			08/09/2016		
Matrix			Solid		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	567,000		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		
Our Lab I.D.			83828.15		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		540 S6		
Tetrachloro-m-xylene	30-150		67.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 10

Project ID: 60488883

Project Name: ITT Dyer Road

Site
666 Dyer Road
Santa Ana, CA 92705

AETL Job Number Submitted Client
83828 08/05/2016 AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 081016MB1

Our Lab I.D.			Method Blank	83828.09		
Client Sample I.D.				EB1-080516		
Date Sampled	Date Sampled			08/05/2016		
Date Prepared			08/10/2016	08/10/2016		
Preparation Method			3510C	3510C		
Date Analyzed			08/11/2016	08/11/2016		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	1.00	5.00	ND	ND		
Aroclor-1221 (PCB-1221)	2.00	10.00	ND	ND		
Aroclor-1232 (PCB-1232)	1.00	5.00	ND	ND		
Aroclor-1242 (PCB-1242)	1.00	5.00	ND	ND		
Aroclor-1248 (PCB-1248)	0.25	2.50	ND	ND		
Aroclor-1254 (PCB-1254)	1.00	5.00	ND	ND		
Aroclor-1260 (PCB-1260)	1.00	5.00	ND	ND		
Aroclor-1262 (PCB-1262)	1.00	5.00	ND	ND		
Aroclor-1268 (PCB-1268)	1.00	5.00	ND	ND		
Our Lab I.D.			Method Blank	83828.09		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	75-125		120	77.0		
Tetrachloro-m-xylene	75-125		118	76.9		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: 11

Project ID: 60488883

Project Name: ITT Dyer Road Site 666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83828	08/05/2016	AECOM

Method: 8082, Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1260 (PCB-1260)	0.00	5.00	5.02	100	5.00	4.29	85.8	15.3	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	1.00	1.19	119	1.00	1.15	115	3.36	75-125	<20
Tetrachloro-m-xylene	0.00	1.00	0.950	95.0	1.00	0.821	82.1	13.6	75-125	<20

QC Batch No: 081016MB1; Dup or Spiked Sample: 0810; LCS: Clean Water; QC Prepared: 08/10/2016; QC Analyzed: 08/11/2016; Units: ug/L

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1260 (PCB-1260)	5.00	6.15	123	75-125			
Surrogates							
Decachlorobiphenyl	1.00	1.20	120	75-125			
Tetrachloro-m-xylene	1.00	0.888	88.8	75-125			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

AECOM Environment

999 W. Town and Country Road

Orange, CA 92868-4713

Telephone: (714)973-9740 Attn: Chris Cavers Page: **12**

Project ID: 60488883

Project Name: ITT Dyer Road

Site

666 Dyer Road

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
83828	08/05/2016	AECOM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 080816MB2; Dup or Spiked Sample: 83817.25; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	725	145	500	735	147	1.37	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	655	131	500	659	132	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	43.6	87.2	50.0	38.4	76.8	11.9	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	56.6	113	50.0	42.0	84.0	25.7	30-150	<20

QC Batch No: 080816MB2; Dup or Spiked Sample: 83817.25; LCS: Blank; QC Prepared: 08/08/2016; QC Analyzed: 08/09/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	424	84.8	500	337	67.4	22.9	50-150	<20	
Aroclor-1260 (PCB-1260)	500	540	108	500	432	86.4	22.2	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	34.7	69.4	50.0	52.1	104	49.9	30-150	<20	
Tetrachloro-m-xylene	50.0	46.2	92.4	50.0	48.3	96.6	4.55	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 78682 Collection Date: October 15, 2015

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on October 15, 2015 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: October 15, 2015

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/3550B/8082

Results of Aroclor-1254 in sample SB-152-3 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40% (67%). These qualifiers indicate imprecision with field sampling techniques, laboratory methodology, or instrumentation, and should be considered estimated.

Results of Aroclor-1248 and Aroclor-1254 in sample SB-151-3 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40% (132 and 159%, respectively). These qualifiers indicate imprecision with field sampling techniques, laboratory methodology, or instrumentation, and should be considered estimated.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 78821 Collection Date: October 15, 2015

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on October 15, 2015 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: October 15, 2015

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/3550B/8082

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 78876 Collection Date: October 15, 2015

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on October 15, 2015 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: October 15, 2015

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/3550B/8082

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), February 2007. *Test Methods for Evaluating Solid Waste (SW-846), Update IV.*
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 80592 Collection Date: March 10, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 80592 Collection Date: March 10, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on March 10, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: March 10, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 80593 Collection Date: March 10, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 80593 Collection Date: March 10, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on March 10, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Site Name: ITT Dyer Road Laboratory Batch Number: 80593

Collection Date: March 10, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability

of the data.

Polychlorinated Biphenyls by Method 3540C/8082

In sample SB-168-0.05', detected compounds were qualified "/J/G" and non-detected compounds were qualified "/R/G" due to low surrogate recovery below 10% (0%). These qualifiers indicate the detections are estimations and should be considered extremely biased low,

and the non-detections should be rejected.

Data Summary and Usability

With the exception of the non-detected compounds in sample SB-168-0.05', the QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the remaining data associated with this laboratory batch should be considered compliant and adequate for its

intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.

Solid Wasie (SW-040), Opadie 11.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Inorganic Superfund Data Review. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Superfund Organic Data Review. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 80821 Collection Date: March 10, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 80821 Collection Date: March 10, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on March 10, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: March 10, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 81153 Collection Date: April 14, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dver Road **Laboratory Batch Number: 81153**

Collection Date: April 14, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on April 14, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Site Name: ITT Dyer Road Laboratory Batch Number: 81153

Collection Date: April 14, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability

of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Results of Aroclor 1248 in samples SB-178-3' and SB-180-2' were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the

established criteria of 40% (99.5 and 43.9%, respectively). These qualifiers indicate imprecision

with field sampling techniques, laboratory methodology, or instrumentation, and the results

should be considered estimated.

Results of Aroclor 1016 in sample SB-176-1 were qualified "/M/M" due to high recovery in the

associated matrix spike sample above the established criteria of 10-165% (348%). These

qualifiers indicate the data should be considered biased high.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any

data. Therefore, the data associated with this laboratory batch should be considered compliant and

adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating

Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Inorganic Superfund Data Review. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Superfund Organic Data Review. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 81168 Collection Date: April 14, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 81168 Collection Date: April 14, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste* (SW-846), *Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on April 14, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: April 14, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 81378 Collection Date: April 27, 2016

DATA ASSESSMENT REPORT

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 81378

Collection Date: April 27, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on April 27, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: April 27, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Results of Aroclor 1248 and Aroclor 1254 in sample SB-210-0-0.5 were qualified "/J/A" due to the relative percent difference between the primary and field duplicate samples exceeding the established criteria of 40% (57.8 and 49.7%, respectively). These qualifiers indicate imprecision with field sampling techniques, laboratory methodology, or instrumentation, and the results should be considered estimated.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 83803 Collection Date: August 3, 2016

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 83803 Collection Date: August 3, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on August 3, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: August 3, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Detections of Polychlorinated biphenyls in sample SB-225-0.05a were qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (228%). These qualifiers indicate the results are over-estimations and should be considered biased high.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating Solid Waste (SW-846), Update IV.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.
- United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 83817 Collection Date: August 4, 2016

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 83817 Collection Date: August 4, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on August 4, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Site Name: ITT Dyer Road Laboratory Batch Number: 83817

Collection Date: August 4, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability

of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Detections of Polychlorinated biphenyls in samples SB-245-0.05 and SB-254-0.05 were

qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (6,902 and

6960%, respectively). These qualifiers indicate the results are over-estimations and should be

considered biased high.

Results of Aroclor 1016 and Aroclor 1260 in sample SB-260-0.05 were qualified "/M/M" due to

high recovery in the associated matrix spike sample above the established criteria of 10-165%

(328 and 220%, respectively%). These qualifiers indicate the data should be considered biased

high.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any

data. Therefore, the data associated with this laboratory batch should be considered compliant and

adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating

Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Inorganic Superfund Data Review. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Superfund Organic Data Review. Publication #EPA540-R-014-002.

Site Name: ITT Dyer Road Laboratory Batch Number: 83828 Collection Date: August 5, 2016

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

Site Name: ITT Dyer Road Laboratory Batch Number: 83828 Collection Date: August 5, 2016

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, August 2014) and USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update IV (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data and QA/QC data (see associated COCs) were collected on August 5, 2016 for ITT Dyer Road. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Collection Date: August 5, 2016

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability

of the data.

Polychlorinated Biphenyls by Method 3540C/8082

Detections of Polychlorinated biphenyls in samples SB-268-0.05 and SB-243-0.05 were qualified "/J/I" due to surrogate recovery above the established limits of 15-160% (8,178 and 540%, respectively). These qualifiers indicate the results are over-estimations and should be

considered biased high.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and

adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. Test Methods for Evaluating

Solid Waste (SW-846), Update IV.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Inorganic Superfund Data Review. Publication #USEPA540/R-013-001.

United States Environmental Protection Agency (USEPA), August 2014. USEPA National Functional

Guidelines for Superfund Organic Data Review. Publication #EPA540-R-014-002.

ATTACHMENT C

BORING LOGS

		Du	renoie Lo	's		
Project Name: ITT I	Oyer Road		Project Nu	umber: 60430750	Boreho Number	
Borehole Location: Dy	yer Road		Northing: 22047	52.2 Easting: 60	72649.7	Sheet I of I
Drilling Agency:	Core Probe			Driller: Jerem	y/William	1
Drilling Equipment:	Hand Auger/ Geoprobe 6600			Date Started: 10/15	/2013 E	Total Depth (ft bgs): 8.0
Drilling Method:	Hand Auger/Direct Push	Sam	aber of ples: 2		/2015 E	Depth to Bedrock (ft bgs): NE
Drilling Fluid:	None	Bore Dian	hole neter (in): 2	Depth to Water (feet): Drilling: NE	1	Static: NE
Completion Information	Backfilled with bentonite chi water, patched to match exis	ips, hydrate sting surface	d with clean	Elevation (feet MSL): Ground: Logged By: D. Foes		Top of Casing: NA cked By: J. Larwood, PG, CEC
Samples	Field Analyses	Log				
Depth (feet)	Type PID (ppm) Sample Time	Graphic USCS	Li	ithologic Description		Remarks
5 SB-150-5 - SB-150-8 - 10	0.0 0925	CL	fine to coarse g graded sand; 2 CLAY: brown (r, poorly noist.	

						DUI	enoie Lo	Jg			
Proje	ect Name: ITT I	yer Road					Project N	umber: 6043075	0 Borel		SB-151
Bore	hole Location: Dy	ver Road				j	lorthing: 22047	62.9 Ea	sting: 6072650		Sheet I of I
Drilli	ing Agency:	Core Prol	be					Driller:	Jeremy/Willia	am	
Drilli	ng Equipment:	Hand Au	ger/ Geo	probe 6600	0			Date Started:	10/15/2015	Total Depth	n (ft bgs): 8.0
Drilli	ing Method:	Hand Au	ger/Dire	ct Push		Numb Sampl	er of es: 6	Date Finished:	10/15/2015	Depth Bedro	n to ock (ft bgs): NE
Drilli	ng Fluid:	None				Boreh Diame	ole ter (in): 2	Depth to Water (feet): Dri	illing: NE		Static: NE
Com	pletion Information	: Backfille water, p	ed with batched to	entonite cl	hips, h	ydrated		Elevation (feet MSL):	Ground: 48.21		Top of Casing: NA
	Samples	1	Tield A	nalyses	T	og		Logged By: D. I	Foes C	hecked	By: J. Larwood, PG, CEG
	Samples			laryses		l l					
Depth (feet)	Sample ID	Type	PID (ppm) Sample	Time	Graphic	OSCS	L	ithologic Descrip	tion		Remarks
	SB-151-0.05 SB-151-1 SB-151-3		0.0	0812 0930 0935		AF	fine to coarse	LTY SAND: brown (grained, subangular 25% silt; 15% gravel	to angular, poorly	y	
=	SB-151-3a			0936		CL	CLAY: brown ((10YR 3/3): 75% low arse grained, subanç	plasticity clay,		
5 - -	SB-151-5		0.0	0925			fine gravel; de	ense, moist	g, e	-	
_	SB-151-8		0.0	0946			-			1	
_							Total Depth =	8.0 feet		=	
10-							-			+	
_							-				
_							-			4	
=							-			7	
15_							-			\exists	
_							-			3	
_							-			\exists	
_							=			7	
20-							-			7	
Ξ										\exists	
_							-			=	
-							-			7	
25_							-			=	
_							-]	
_							-			=	
_										\exists	

		Dorenoie L	ωg	
Project Name: ITT I	Oyer Road	Project 1	Number: 60430750 Borel Numb	
Borehole Location: Dy	yer Road	Northing: 2204	Easting: 6072649.	Sheet I of I
Drilling Agency:	Core Probe		Driller: Jeremy/Willia	am
Drilling Equipment:	Hand Auger/ Geoprobe 660)	Date Started: 10/15/2015	Total Depth (ft bgs): 8.0
Drilling Method:	Hand Auger/Direct Push	Number of Samples: 6	Date Finished: 10/15/2015	Depth to Bedrock (ft bgs): NE
Drilling Fluid:	None	Borehole Diameter (in): 2	Depth to Water (feet): Drilling: NE	Static: NE
Completion Information	Backfilled with bentonite cl water, patched to match ex	sting surface	Elevation (feet MSL): Ground: 48.18 Logged By: D. Foes C	Top of Casing: NA
Samples	Field Analyses	Log		2). J. Lai Wood, 1 G, CEC
Depth (feet) Sample ID	Type PID (ppm) Sample Time	Graphic	Lithologic Description	Remarks
SB-152-0.05 SB-152-1 SB-152-3 SB-152-3a	0.0 0807 0.0 0845 0.0 0857 0856	fine to coarse sand; 35% si CLAY: brown	SILTY SAND: brown (10YR 4/3); 60% e grained, subangular, poorly graded lt; 5% gravel: loose, moist. 1 (10YR 3/3): 90% low plasticity clay, to coarse grained, subangular sand;	
SB-152-5	0.0 0915	dense, moist		
SB-152-8	0.0 0918	_ Total Depth =	= 8 0 feet	
10-				

					DU	renoie Lo	g		
Project Name: I	TT Dyer Roa	ıd				Project Nu	umber: 60430750	Boreh Numb	
Borehole Location:	Dyer Road					Northing: 22047()2.7 Easting: 60)72649.8	Sheet 1 of 1
Drilling Agency:	Core P	robe					Driller: Jeren	ny/Willia	m
Drilling Equipment	: Hand A	Auger/ Geop	probe 6600)			Date Started: 10/1:	3/2013	Total Depth (ft bgs): 0.5
Drilling Method:	Hand A	Auger/Direc	t Push		Samp	per of les: 1		5/2015	Depth to Bedrock (ft bgs): NE
Drilling Fluid:	None				Borel Diam	nole eter (in): 2	Depth to Water (feet): Drilling: N	Е	Static: NE
Completion Inform	ation: Backf water,	filled with be , patched to	entonite ch match exi	nips, hy sting s	ydrated urface	with clean	Elevation (feet MSL): Ground: Logged By: D. Foes		Top of Casing: NA necked By: J. Larwood, PG, CEC
Sampl	es	Field An	alyses	L	og		20880427. 2.1000		Lai wood, 1 G, CEC
Depth (feet)	Type	PID (ppm) Sample	Time	Graphic	USCS	Li	thologic Description		Remarks
SB-153-0.	05	-	0755			Asphalt Pea gravel			<u></u>
5						Refusal at .5'	9.5 feet		
25									

			DU	renoie Log				
Project Name: ITT I	Oyer Road			Project Number: 60430750	Boreh Numb			
Borehole Location: Dy	yer Road			Northing: 2204690.4 Easting:	6072662.7	Sheet 1 of 1		
Drilling Agency:	Core Probe			Driller: Jer	emy/Willia	m		
Drilling Equipment:	Hand Auger/ Geopr	robe 6600		Date Started: 10	Date Started: 10/15/2015 Total Depth (ft bgs): 8.0			
Drilling Method:	Hand Auger/Direct	Push	Numb Samp	er of les: 5 Date Finished: 10	/15/2015	Depth to Bedrock (ft bgs): NE		
Drilling Fluid:	None		Boreh Diame	ole Depth to Water (feet): Drilling:		Static: NE		
Completion Information	Backfilled with ber water, patched to r	entonite chips, h match existing	ydrated surface	with clean Elevation (feet MSL): Ground Logged By: D. Foes	d: 47.91	Top of Casing: NA		
Samples	Field Ana	alyses L	og	Logged By. D. Toes	Cil	Larwood, PG, CEC		
Depth (feet)	Type PID (ppm) Sample	Time	USCS	Lithologic Description		Remarks		
SB-154-0.05 SB-154-1 SB-154-3	0.0	0758 0802	AF CL	Asphalt Artificial Fill SILTY SAND: brown (10YR of fine to coarse grained, subangular to ang graded sand; 25% silt; 15% gravel: loose CLAY: very dark grey (10YR 3/1): 80% locals in 100% coarse grained as a local silver.	ular, poorly e, moist. w plasticity	<u> </u>		
SB-154-5	0.0	0825	ML	 clay; 10% coarse grained, subangular sargravel; medium density; moist SILT with SAND: very dark grey brown (1 80% non-plastic silt; 20% poorly graded, medium to coarse grained sand; moist; medium to coarse grained. 	0YR 3/1); sub angular			
SB-154-8	0.0	0828	:	Total Depth = 8.0 feet		-		
10-								

						DU	renoie Lo	g					
Projec	ct Name: ITT I	Oyer Road					Project Nu	imber: 60430750	Borel Numb		B-155		
Boreh	nole Location: Dy	yer Road					Northing: 220470	Easting: 60	72673		Sheet	l of	1
Drillii	ng Agency:	Core Pro	be					Driller: Jeren	ny/Willia	am			
Drillii	ng Equipment:	Hand Au	ger/ Geop	orobe 6600	0			Date Started: 10/15	5/2015	Total Depth (ft	ugs).	0.0	
Drillii	ng Method:	Hand Au	ger/Direc	t Push		Samp	ber of oles: 3		5/2015	Depth to Bedrock	(ft bgs): 1	NE .	
Drillii	ng Fluid:	None				Borel Dian	hole neter (in): 2	Depth to Water (feet): Drilling: NI	Ξ	Sta	atic: NE		
Comp	oletion Information	Backfille water, p	ed with be atched to	entonite cl match ex	hips, hy isting s	ydrateo urface	d with clean	Elevation (feet MSL): Ground: Logged By: D. Foes		Top	of Casing		CEC
	Samples]	Field An	alyses	L	og		205804 23. 2.1040		lecked By	· J. Lai wo	ou, r o,	
Depth (feet)	Sample ID	Type	PID (ppm) Sample	Time	Graphic	USCS	Li	thologic Description			Rema	ırks	
	SB-155-0.05 SB-155-1 SB-155-3	×	0.0	0803 0835 0839	\$	AF	(10YR 4/4); 60°		,				
5													
25													

ATTACHMENT D IDW MANAGEMENT FORM AND MANIFESTS

IDW MANAGEMENT FORM

COMPANY: ITT Corporation	PROJECT: ITT Dyer Road 60430750
SITE NAME: ITT Dyer Road	LOCATION: 666 Dyer Road, Santa Ana CA

CONTAINER NUMBER	MEDIA DESCRIPTION	MEDIA ORIGIN	DATE FILLED	DATE SAMPLED	DATE DISPOSED	COMMENTS
101515-01	Soil Cuttings and Debris	Die Cast Area Sampling	10/15/15	Not Required	12/14/15	Soil and Asphalt from Sampling Activities
101515-02	Decon Water	Die Cast Area Sampling	10/15/15	Not Required	12/14/15	Decon Water from Sampling Activities
031016-01	Soil Cuttings and Debris	Die Cast Area Sampling	3/10/16	Not Required	6/22/16	Soil, Asphalt, and Concrete from Sampling Activities
031016-02	Decon Water	Die Cast Area Sampling	3/10/16	Not Required	6/22/16	Decon Water from Sampling Activities
041416-01	Soil Cuttings and Debris	Die Cast Area Sampling	4/14/16	Not Required	6/22/16	Soil, Asphalt, and Concrete from Sampling Activities
041416-02	Decon Water	Die Cast Area Sampling	4/14/16	Not Required	6/22/16	Decon Water from Sampling Activities
080316-01	Concrete, Soil Cuttings, and Debris	Die Cast Area Sampling	8/3/16	Not Required	Not Yet Disposed	Concrete and Soil from Sampling Activities
080316-02	Decon Water	Die Cast Area Sampling	8/3/16	Not Required	Not Yet Disposed	Decon Water from Sampling Activities
080316-03	Decon Water	Die Cast Area Sampling	8/3/16	Not Required	Not Yet Disposed	Decon Water from Sampling Activities

	Date of Shipment:	Responsible for	Payment:	Transport		Facility #:	Approval Num	ber:	Load #
ì	12 123 115	-	8.		198	A07	- 44810		40
	Generator's Name and Billing	THE PARTY NAMED IN COLUMN TWO IS NOT THE PARTY NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED			Generator's	Phone #:			2 1
	ITT CORPORATION			949-56					
	ATTN: MR. JEFFREY			Person to Co	ontact:	8			
	56 TECHNOLOGY DF IRVINE, CA 92618	3.			FAX#:		Customer Acco	ount Number	
						1 			
	Consultant's Name and Billin	ng Address:			Consultant's	Phone #:			
	9.8				Person to Co	ontact:	_		
	e		5		FAX#:		Customer Acco	ount Number	
	Generation Site (Transport fro	om): (name & address)			Site Phone #	:			
	ITT CANNON				Person to Co	ontact:			
ant	666 E. DYER RD SANTA ANA, CA					reconstruct transfer			
sult	PERMITTERS, 254	satisfy the factor			FAX#:				
and/or Consultant	Designated Facility (Transpor	rt to): (name & address)			Facility Pho	ne #:			
or	SOIL SAFE	tt toj. (mine O muress)			(800) 8	62-6001			0
pue	12328 HIBISCUS	AVENUE			Person to Co				
	ADELANTO, CA				FAX#:	ROVANSAL			
Generator						46-8004			
Gen	Transporter Name and Mailir	ng Address:			Transporter	s Phone #:		D. 0.4.4.5.0	C 4 D
Ĭ	BELSHIRE				100 20000 111700 11100		C.A	R000183	813
	25971 TOWNE C				Person to Co	ntact: MOOTHART		450647	
	FOOTHILL RANC	H, CA 92010	ocol sena	26	FAX#:	111001111111	Customer Acco	alian kananan	
			BESI: 2609	949-460	3-5210	1			
	Description of Soil	Moisture Content	Contaminated	l by: Appro	x. Qty: D	escription of Deliver	y Gross Weight	Tare Weight	Net Weig
	Sand	0 - 10%	Gas Diesel Other	10 !	DM S	011	38000	37400	612
	Sand Organic	0 - 10% 10 - 20%	Gas Diesel					14.	-30
I	Clay Other	20% - over 🗆	Other	ā		Code Transact			
1	List any exception to items list	ted above:				Scale Ticket #	1235	90	
- 1	Generator's and/or consul								
		God lan makera fou the	e Generation S	Site shown	above and n	othing has been add	ed or done to such	soil that w	ould alter
	Sheet completed and certi	jieu by mezus jor in							Day , Yea
	in any way.		Itant D	Sig	nature and da	te:	1.15	. Month.	
	in any way. Print or, Type Name: Gene	erator 🖾 Consu	ltant 🗆	Sig	nature and da)	Month	14/15
- Ser	in any way. Print or, Type Name: Gene	erator 🗷 Consu			PPO.	Malloa		1 hour	14 15 tly the san
orter	in any way. Print or Type Name: General Control Control Transporter's certification condition as when receive	erator D Consu CONTINATION 1: I/We acknowledge ed. I/We further cer	receipt of the tify that the so	soil referen	ced above an directly tran	of A A A A A A A A A A A A A A A A A A A	soil is being delive	red in exact	
nsporter	in any way. Print or Type Name: General Control Classification Transporter's certification condition as when receive without off-loading, adding	erator D Consu CONTINATION 1: I/We acknowledge ed. I/We further cer	receipt of the tify that the so	soil referen oil is being oay delayin	ced above and directly transged delivery to	of A A A A A A A A A A A A A A A A A A A	soil is being delive	red in exact the Designa	ted Facili
Transporter	in any way. Print or Type Name: General Control Control Transporter's certification condition as when receive without off-loading, adding Print or Type Name:	erator © Consu CONTOLOSO 1: I/We acknowledge 2d. I/We further cer. 1g to, subtracting fro	e receipt of the tify that the so om or in any w	soil referen oil is being oay delayin Sig	ced above an directly tran	of A A A A A A A A A A A A A A A A A A A	soil is being delive ceneration Site to t	red in exact the Designa	ted Facili
Transporter	in any way. Print or Type Name: General Control Control Transporter's certification condition as when receive without off-loading, adding Print or Type Name:	erator D Consu CONTINATION 1: I/We acknowledge ed. I/We further cer	e receipt of the tify that the so om or in any w	soil referen oil is being oay delayin Sig	ced above and directly transged delivery to	of A A A A A A A A A A A A A A A A A A A	soil is being delive	red in exact the Designa	ted Facili
	in any way. Print or Type Name: General Carro Classical Transporter's certification condition as when receive without off-loading, adding Print or Type Name:	erator © Consu CONTOLOSO 1: I/We acknowledge 2d. I/We further cer. 1g to, subtracting fro	e receipt of the tify that the so om or in any w	soil referen oil is being oay delayin Sig	ced above and directly transged delivery to	of A A A A A A A A A A A A A A A A A A A	soil is being delive ceneration Site to t	red in exact the Designa	ted Facili
	in any way. Print or Type Name: General Carro Classical Transporter's certification condition as when receive without off-loading, adding Print or Type Name:	erator © Consu CONTOLOSO 1: I/We acknowledge 2d. I/We further cer. 1g to, subtracting fro	e receipt of the tify that the so om or in any w	soil referen oil is being oay delayin Sig	ced above and directly transged delivery to	of A A A A A A A A A A A A A A A A A A A	soil is being delive ceneration Site to t	red in exact the Designa	ted Facili
Facility	in any way. Print or Type Name: General Carro Classical Carro Classical Carro Classical Carro Carro Carro Condition as when received without off-loading, adding Print or Type Name: Discrepancies:	erator © Consular Con	e receipt of the tify that the so om or in any u	soil referen iil is being pay delayin Sig	ced above and directly trang delivery to halture and da	and certify that such asported from the Cosuch site.	soil is being delive ceneration Site to t	red in exact the Designa	ted Facili
Facility	in any way. Print or Type Name: General Control Control Control Control Condition as when received without off-loading, adding Print or Type Name: Discrepancies: Recycling Facility certifies	erator © Consular Con	e receipt of the tify that the so om or in any u	soil referen iil is being ony delayin Sig	ced above and directly trang delivery to mature and da	and certify that such asported from the Consults site.	soil is being delive ceneration Site to t	red in exact the Designa	ted Facili
Facility	in any way. Print or Type Name: General Control Control Control Control Condition as when received without off-loading, adding Print or Type Name: Recycling Facility certifies Print or Type Name:	erator © Consular Con	e receipt of the tify that the so om or in any u	soil referen iil is being ony delayin Sig	ced above and directly trang delivery to halture and da	and certify that such asported from the Consults site.	soil is being delive Peneration Site to t	red in exact the Designation	Day Yea
	in any way. Print or Type Name: General Control Control Control Control Condition as when received without off-loading, adding Print or Type Name: Recycling Facility certifies Print or Type Name:	erator December Consulting for the security of the security Consulting from the consulting from the security of the security of the security of the security consulting from the security of the security of the security of the security consulting from the security of the	e receipt of the tify that the so om or in any u	soil referen iil is being ony delayin Sig	ced above and directly trang delivery to mature and da	and certify that such asported from the Consults site.	soil is being delive Peneration Site to t	red in exact the Designa	Day Yea

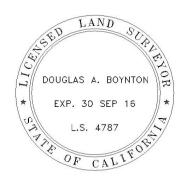
NON-HAZARDOUS WASTE DATA FORM

			260936	
-	Generator's Name and Mailing Address	Generator's Site Address (if different ti	nan mailing address)	
. 1	ITT CORPORATION	ITT CANNON		
*	ATTN: MR. JEFFREY STANEK	666 E. DYER RD.	¥ (8)	* 2 2 2
	56 TECHNOLOGY DR	SANTA ANA, CA 9270	5	
	IRVINE, CA 92618	see it a take a feet a street or	X7	*v = 5
	in the second of	34		
	Generator's Phone: 949-562-7401		7	4 Tu
2	Generator's Phone: Container type removed from site:	Container type transported t	o receiving facility:	-
F 1			- AND DECEMBER	
	Drums	Drums X15 Vacuum Truc	k 🚨 Roll-off Truck	Dump Truck
	Пон	Other	a	
	Other	- 01101	. شير ر	21/1
~		Quantity		Gallons
Ö	Quantity	Quantity	- Volume /	1
				100 Mar. 100 A 1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
GENERATOR	WASTE DESCRIPTIONNON-HAZARDOUS WATER	GENERATING PROCESS	LL PURGING / D	ECON VVATER
7	COMPONENTS OF WASTE PPM %	COMPONENTS OF	WASTE	PPM %
П		- COMPONENTO OF	10	
פ	WATER 98-100%	3		
0.8			19 m	
1.9	трн ≪1%			er Kaliga
	2	4-		- · · · ·
	Waste Profile PROPERTIES: pH_	7-10 SOLID M LIQUID	SLUDGE SLURRY	OTHER
				ALL STATES
	HANDLING INSTRUCTIONS: WEAR ALL APPROPRIATE PERSONA	AL PROTECTIVE CLOTH	ING.	
X	TIMPLING INCOMENS.		The A	
		\$	10	No. of the second
				<u></u>
	Generator-Printed/Typed Name / Signature	00		Month Day
100	Pameta Penalosa	Prialic	101	DIMI
1	34 A Managara (2004-201-201 12 3) Care to Lating 12 20-20-20 15:			100 7.1
Y 15	The Generator certifies that the waste as described is 100% non-hazardous		Phone#	
	Transporter 1 Company Name BELSHIRE	1	949-460-5200	
_				
	Transporter 1 Printed/Typed Name Signature Signature	the grant age and the second s		Month Day
Ē	JOSE FORCALO I			12/14/1
5	Transporter Acknowledgment of Receipt of Majerials		***	
INANSFORI	Transporter 2 Company Name	honger	Phone#	
ź.	NIETO & SONS TRUCKING, INC.	. 1	714-990-6855	
5	Transporter 2 Printed/Typed Name Signature 7	, 11		Month Day
Ξ.		West Hora	A	1/2126-12
	MIGUEL CHROIT - 116	Court Marc	C. Com	16.160
	Transporter Acknowledgment of Receipt of Materials		Dhaned	- X
-	Designated Facility Name and Site Address-	30.00	Phone# 310-537-7100 .	
=	DEMENNO KERDOON		ar the west 1 though	fra e
=	2000 N. ALAMEDA ST.	- 14 S	*	
A.	COMPTON, CA 90222	90 k		
Ľ	la a got the grant of the contract of the cont		11	
<u> </u>	8		2 2 8	2 t 12
É	The state of the s	1		
RECEIVING PACILLLY	Printed/Typed Name, 4 A Signature Signature	6.1111		Month Day
5	SOPTAIR SVAY	MAN ANE		1121161
ñ.		My WILL	/	(C)
_	Designated Facility Owner or Operator: Certification of receipt of materials covered by this date for			
260	EDYER	M2	. * 1	** ;
21	04257	51 *	7	8 2
11	D4W2]			

	Manifest		SOIL SA	》 n-Hazar	dous So	ils		↓ Mani	fest# ↓	
T	Date of Shipment:	Responsible for	Payment:	Transport	Truck #:	Facility #:	App	oroval Numb		Load #
1	1 1			576	1476	A07	4	481	0	COL
H	Generator's Name and Billing	Address:			Generat	or's Phone #:		- Comba		and policy works
I	ITT CORPORATION				949	-562-7401				ÿ
1	ATTN: MR. JEFFREY	STANEK	*/		Person	o Contact:				
1	56 TECHNOLOGY DR						,			
	IRVINE, CA 92618		o i	ŧ	FAX#:	*.	Cu	stomer Acco	unt Number	
ŀ	Consultant's Name and Billing	Address:			Consult	ant's Phone #:				
١					Person	o Contact:				
					FAX#:	=	Cu	stomer Acco	unt Number	
-	Generation Site (Transport from	m): (name & address)			Site Pho	ne #:				
	ITT CANNON				Person	o Contact:				
	666 E. DYER RD.	2706								
	SANTA ANA, CA 9	2700			FAX#:					
	Designated Facility (Transport	to): (name & address)			Facility	Phone #:				
	SOIL SAFE					0) 862-8001				
	12329 HIBISCUS	AVENUE				o Contact: E PROVANSAL				
1	ADELANTO, CA	92301	, , , , , , , , , , , , , , , , , , ,	4 6	FAX#:	-1 ISC VALUE AL				-
١						0) 246-8004				
-	Transporter Name and Mailin	g Address:			Transpe	orter's Phone #: -460-5200		CA	R000183	913
	BELSHIRE					to Contact:	-	74/		- 15 T
	25971 TOWNE C	ENTRE DRIVE				RY MOOTHAR	r .		450647	
	FOOTHILL RANG	H, CA 92610			FAX#:	and the section of		stomer Acco	ount Number	
	**		BESI: 2692	279		-460-5210	,	TOTAL PICTO		
ľ	Description of Soil	Moisture Content	Contaminated	by: Appr	ox. Qty:	Description of Del	ivery Gr	oss Weight	Tare Weight	Net Weig
0	Sand □ Organic □ Clay □ Other □	0 - 10%	Gas Diesel Other	00	Z DM	Soil	3	8340	37100	1046
ľ	Sand □ Organic □	0 - 10%	Gas Diesel							.60
١	Clay Other	10 - 20% □ 20% - over □	Other	ä						
I	List any exception to items list	ed above:				Scale Ticket #		120	338	ì
	Generator's and/or consul Sheet completed and certij in any way.	fied by me/us for th	e Generation S	Site shown	above a	id nothing has been	tirely from t added or do	hose soils d one to such	escried in the soil that we Month,	outa aiter
		/ /	ltant 🗆	51	gnature a	Penall	101			22 10
_ [Transporter's certification	Penaloso		coil refere	mond also			eino deline		-
T		: 1/VVe acknowledge	tify that the so	oil is being	directly	transported from the	he Generati	on Site to	the Designa	ited Facili
	condition as when receive	a. 17vve juriner cer			no delime	ry to such site.				
	condition as when receive without off-loading, addin	g to, subtracting fr	om or in any u						Month	Day . Yes
	condition as when receive without off-loading, addin Print or Type Name:	g to, subtracting fr	om or in any u		ignature a		7		Month	100000 BOOK OF A 10000
	condition as when receive without off-loading, addin Print or Type Name:	a. 17 ve further cer g to, subtracting fr va s	om or in any u				7		In Desirable Services and Property of the Control o	
	condition as when receive without off-loading, addin Print or Type Name:	g to, subtracting fr	om or in any u				72		In Desirable Services and Property of the Control o	
i acinity inansport	condition as when receive without off-loading, addin Print or Type Name:	g to, subtracting fr	om or in any u	si this manif	est excep	t as noted above:	7		In Desirable Services and Property of the Control o	10000 BUV 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
man gramma	condition as when receive without off-loading, addin Print or Type Name: Discrepancies: Recycling Facility certifies Print or Type Name:	g to, subtracting fr	om or in any u	si this manif	gnature a	t as noted above:	7		In Desirable Services and Property of the Control o	22 10

666E DYEN/ 1349349

TRANSPORTER COPY


NON-HAZARDOUS WASTE DATA FORM

			269279	
	Generator's Name and Malling Address	Generator's Site Address	(If different than mailing address)	
	ITT CORPORATION	ITT CANNON		
	ATTN: MR. JEFFREY STANEK	666 E. DYER F	RD.	
	56 TECHNOLOGY DR.	SANTA ANA, C	CA 92705	
	IRVINE, CA 92518	THE RESIDENCE OF THE PARTY OF T		
	Generator's Phone: 949-562-7401	1		
	Container type removed from site:	Container type tran	nsported to receiving facility:	2.7 W
	52	_	n	0
	☑ Xorums ☐ Vacuum Truck ☐ Roll-off Truck	Dump Truck Drums XXX V	acuum Truck 🚨 Roll-off Truck	Dump Truck
	□ Other	Other		
		. 1	Volume 3000	111000
뜻	Quantity 002	Quantity	Volume OUV	WIGHT
띦				
GENERATOR	WASTE DESCRIPTIONNON-HAZARDOUS	WATER GENERATING PROCE	ESS DECON WA	TER
岂	COMPONENTS OF WASTE		PONENTS OF WASTE	PPM %
끧	****	99-100%		
-	1WATER	89-10076 3,		

	2. TPH	<1% 4		
	Waste Profile		LIQUID SLUDGE SLURRY	OTHER
	HANDLING INSTRUCTIONS: WEAR ALL APPROF	PRIATE PERSONAL PROTECTIVE	CLOTHING.	
			WORK TO THE PROPERTY OF THE PR	
	Generator Printed/Typed Name	Signature		Month Day Year
	Yamela Penalosa	1 Penalu	20	106 22 16
	The Generator certifies that the waste as described is 100% non-hazar	dous		
	Transporter 1 Company Name		Phone#	
	BELSHIRE		949-460-5200	
RTER	Transporter 1 Printed/Typed Name	Signature		Month Day Year
7	Thomas Buck	1 2	1	106 22 16
10	Transporter Acknowledgment of Receipt of Materials			
l R	Transporter 2 Company Name		Phone#	
TRANSP	NIETO & SONS TRUCKING, INC.		714-990-6855	
克	Transporter 2 Printed/Typed Name	Signature	•	Month Day Year
	MIGHEL GARCETA		2	162716
	Transporter Acknowledgment of Receipt of Materials			
_	Designated Facility Name and Site Address		Phone#	
1E	DEMENNO KERDOON		310-537-7100	
	2000 N. ALAMEDA ST.			
١X	COMPTON, CA 90222			
100	1			
Ž		,		
NIX.	Righted Topod Name	Signature / /a /// a ///	<i>y</i>	Month Day Year
CEIVIN	Printed/Typed Name	Signature // /////////////////////////////////	Mail	
RECEIVING FACILITY	Printed/Typed Name SOphan Designated Facility Owner or Operator: Certification of receipt of mate	1 101111/12	104	Month Day Year

666EDYER 1365646

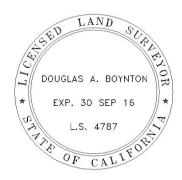
ATTACHMENT E SURVEY DATA

<u>BORE</u>	<u>ELEV</u>	<u>DESC</u>	<u>NORTH</u>	<u>EAST</u>
SB-150	48.18	ASPHALT	2204752.2	6072649.7
SB-151	48.21	ASPHALT	2204762.9	6072650.0
SB-152	48.18	ASPHALT	2204742.9	6072649.3
SB-153	48.09	ASPHALT	2204702.7	6072649.8
SB-154	47.91	ASPHALT	2204690.4	6072662.7
SB-155	47.65	ASPHALT	2204701.0	6072673.0

BENCHMARK:

VERTICAL DATUM NGVD29

ORANGE COUNTY BM #SA-248-70, MONUMENT IS LOCATED IN THE E'LY CORNER OF THE INT OF GRAND AVE AND WARNER AVE, 96.5' W'LY OF THE CENTERLINE OF WARNER AVE, 39' E'LY OF THE CENTERLINE OF GRAND AVE MONUMENT IS SET LEVEL WITH SIDEWALK


2003 ADJ ELEV= 65.588 FEET NGVD29

HORIZONTAL DATUM NAD83, ZONE 6

NGS PID STATIONS AJ1865 AND AJ1920 EPOCH DATE 2000.35

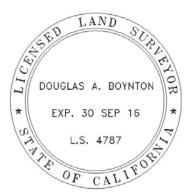
BORE	<u>ELEV</u>	<u>NORTH</u>	<u>EAST</u>
SB-156	48.3	2204801.8	6072621.7
SB-157	48.3	2204779.6	6072621.4
SB-158	48.3	2204754.7	6072625.0
SB-159	48.3	2204728.5	6072619.0
SB-160	48.1	2204777.4	6072650.4
SB-161	48.0	2204779.7	6072692.8
SB-162	48.1	2204670.8	6072650.0
SB-163	47.6	2204672.4	6072688.7
SB-164	47.7	2204939.4	6072847.5
SB-165	47.8	2204812.2	6072883.5
SB-166	47.7	2204915.4	6072850.9
SB-167	47.8	2204891.2	6072828.2
SB-168	47.8	2204875.7	6072827.9
SB-169	47.8	2204834.9	6072849.5
SB-170	47.7	2204819.2	6072811.5
SB-171	47.7	2204820.2	6072845.1
SB-172	47.8	2204791.9	6072811.8
SB-173	47.7	2204788.4	6072846.0
SB-174	47.7	2204766.9	6072843.7
SB-175	47.7	2204745.5	6072831.2
SB-176	47.7	2204724.2	6072844.5
SB-177	48.3	2204779.9	6072605.6
SB-178	48.3	2204755.0	6072605.0
SB-179	48.3	2204672.6	6072619.8
SB-180	47.5	2204649.9	6072686.7
SB-181	47.8	2204979.7	6072887.0
SB-182	47.9	2204973.7	6072926.8
SB-183	47.8	2204931.7	6072883.2
SB-184	47.5	2204936.8	6072929.5
SB-185	47.9	2204887.3	6072884.5
SB-186	47.8	2204884.2	6072929.7
SB-187	47.8	2204838.5	6072884.3
SB-188	47.8	2204837.7	6072925.6
SB-189	47.7	2204921.0	6072813.8
SB-190	47.9	2204811.3	6072918.3
SB-191	47.9	2204787.7	6072889.0
SB-192	47.9	2204786.3	6072920.9
SB-193	47.8	2204763.4	6072890.6
SB-194	47.8	2204765.3	6072927.5
SB-195	47.9	2204720.8	6072889.0
SB-196	47.9	2204718.2	6072924.5

<u>BORE</u>	<u>ELEV</u>	<u>NORTH</u>	<u>EAST</u>
SB-197	47.8	2205104.0	6073154.7
SB-198	47.7	2204923.1	6073157.3
SB-199	47.9	2204623.3	6073114.4
SB-200	47.8	2205110.6	6072848.2
SB-201	47.8	2205108.5	6072967.1
SB-202	47.7	2205105.2	6073072.8
SB-203	47.8	2205042.7	6072862.1
SB-204	47.8	2204998.5	6072969.6
SB-205	47.8	2205038.6	6073076.9
SB-206	47.8	2205013.8	6073133.8
SB-207	47.9	2204887.0	6073043.3
SB-208	47.9	2204793.2	6073002.2
SB-209	47.9	2204790.6	6073118.3
SB-210	47.8	2204712.3	6072993.5
SB-211	47.8	2204712.1	6073124.0
SB-212	47.9	2204603.7	6072743.0
SB-213	47.8	2204634.5	6072838.8
SB-214	47.9	2204619.8	6072901.0
SB-215	47.8	2204620.3	6072990.2
SB-216	47.8	2204522.4	6072761.6
SB-217	47.8	2204499.1	6072862.0

BENCHMARK:

VERTICAL DATUM NGVD29

ORANGE COUNTY BM #SA-248-70, MONUMENT IS LOCATED IN THE E'LY CORNER OF THE INT OF GRAND AVE AND WARNER AVE, 96.5' W'LY OF THE CENTERLINE OF WARNER AVE, 39' E'LY OF THE CENTERLINE OF GRAND AVE. MONUMENT IS SET LEVEL WITH SIDEWALK.


2003 ADJ ELEV= 65.588 FEET NGVD29

HORIZONTAL DATUM NAD 83, ZONE 6

NGS PID STATIONS AJ1865 AND AJ1920 EPOCH DATE 2000.35

BORE	<u>ELEV</u>	<u>NORTH</u>	<u>EAST</u>
SB-218	47.8	2205119.5	6072923.8
SB-219	47.8	2205072.2	6072915.0
SB-220	47.8	2205070.2	6072972.6
SB-221	47.8	2205014.1	6072920.3
SB-222	47.9	2205037.1	6072961.5
SB-223	47.9	2205033.8	6073005.4
SB-224	47.7	2205006.5	6073157.2
SB-225	47.8	2204969.1	6072959.0
SB-226	47.9	2204982.5	6073003.1
SB-227	47.9	2204981.8	6073033.6
SB-228	47.8	2204977.8	6073087.7
SB-229	47.8	2204951.7	6073132.3
SB-230	47.8	2204934.2	6072960.5
SB-231	47.9	2204930.4	6073001.7
SB-232	47.9	2204927.9	6073044.5
SB-234	47.9	2204928.8	6073096.4
SB-235	47.9	2204882.6	6072970.0
SB-236	47.9	2204870.2	6073067.8
SB-237	47.9	2204868.5	6073103.9
SB-238	47.8	2204865.8	6073128.4
SB-239	47.9	2204830.3	6072966.0
SB-240	47.9	2204827.2	6072996.7
SB-241	47.9	2204831.3	6073050.3
SB-242	47.8	2204831.7	6073108.8
SB-243	47.8	2204831.5	6073126.7
SB-244	47.9	2204775.9	6072964.5
SB-245	47.9	2204768.5	6073002.6
SB-246	48.6	2204767.8	6073050.5
SB-247	47.8	2204769.4	6073120.6
SB-248	47.8	2204734.2	6073003.6
SB-249	47.9	2204730.9	6073058.1
SB-251	47.8	2204661.3	6072731.1
SB-252	47.8	2204669.0	6072767.9
SB-253	47.8	2204673.8	6072816.1
SB-254	47.8	2204672.0	6072872.8
SB-255	47.8	2204670.5	6072919.7
SB-256	47.8	2204668.0	6072978.6
SB-257	47.8	2204670.9	6073002.7

BORE	<u>ELEV</u>	<u>NORTH</u>	<u>EAST</u>
SB-258	47.8	2204668.8	6073061.7
SB-259	47.8	2204667.0	6073117.8
SB-260	47.6	2204668.1	6073141.9
SB-261	47.8	2204609.3	6072802.2
SB-262	47.8	2204618.6	6073023.2
SB-263	47.9	2204618.2	6073075.5
SB-264	47.8	2204582.1	6072816.3
SB-265	47.8	2204579.0	6072870.9
SB-266	47.8	2204577.0	6072919.9
SB-267	47.8	2204587.0	6072980.3
SB-268	47.7	2204586.7	6073023.9
SB-269	47.8	2204584.3	6073072.8
SB-270	47.8	2204528.1	6072719.5
SB-271	47.8	2204530.2	6072814.8
SB-272	47.8	2204527.4	6072867.6
SB-273	47.8	2204475.4	6072714.0
SB-274	47.8	2204474.4	6072763.3
SB-275	47.8	2204476.0	6072817.0
SB-276	47.7	2205038.3	6072830.2
SB-277	47.5	2204987.0	6072830.6

BENCHMARK:

VERTICAL DATUM NGVD29

ORANGE COUNTY BM #SA-248-70, MONUMENT IS LOCATED IN THE E'LY CORNER OF THE INT OF GRAND AVE AND WARNER AVE, 96.5' W'LY OF THE CENTERLINE OF WARNER AVE, 39' E'LY OF THE CENTERLINE OF GRAND AVE. MONUMENT IS SET LEVEL WITH SIDEWALK

2003 ADJ ELEV= 65.588 FEET NGVD29

HORIZONTAL DATUM NAD83, ZONE 6

NGS PID STATIONS AJ1865 AND AJ1920 EPOCH DATE 2000.35

Risk-Based Disposal Approval Application East Building Die Cast Area 666 East Dyer Road Santa Ana, California

APPENDIX C

ASBESTOS, LEAD-BASED PAINT, AND OTHER HAZARDOUS MATERIALS SURVEY REPORT

Asbestos, Lead-Based Paint, and Other Hazardous Materials Survey

ITT Industries 666 East Dyer Road Santa Ana, CA 92705

Prepared for:

ERM

2875 Michelle Drive, Suite 200 Irvine, CA 92606

Prepared by:

Aurora Industrial Hygiene 1132 Mission Street, Suite B South Pasadena, CA 91030 Project #: 26446

Dates of Inspections: April 26-28, May 2-3, 2016 Date of Report: May 25, 2016

Reviewed and Approved:

Grace M. Rinck, CIH, CAC, CDPH Certified

Table of Contents

EXECUTIVE SUMMARY	3
METHODOLOGY	8
DISCUSSION AND RECOMMENDATIONS	
Asbestos	14
REGULATORY REQUIREMENTS:	14
LEAD	15
ADDITIONAL INFORMATION	15
APPENDICES	16
Sample Location Diagrams	
Рнотоѕ	28
COMPLETE LABORATORY SUMMARY TABLES	
LABORATORY ANALYSIS & CHAIN OF CUSTODY FORMS	106
CERTIFICATIONS	107

EXECUTIVE SUMMARY

Aurora Industrial Hygiene (Aurora) conducted an investigation for the presence of asbestos-containing materials (ACMs), lead-based paint (LBP), and other hazardous materials (OHM) at the former ITT Industries facility located at 666 East Dyer Road in Santa Ana, California 92705. The survey included the following buildings:

- East Building
- West Building
- Warehouse
- Lab Building
- High-Bay Storage Building
- Guard Shack
- Credit Union
- Hazardous Materials Storage Shed and Small Guard Shack
- NE Trailer

The inspections were conducted by Robert Rinck, a California Certified Asbestos Consultant (CAC #03-3374) and a California Department of Public Health (CDPH) Certified Lead Inspector/Risk Assessor (#4868), Matt Froehlich, a California Certified Asbestos Consultant (CAC) (#15-5470) and a California Department of Public Health (CDPH) Certified Lead Inspector/Risk Assessor (#13643), Glenn Gutierrez, a California Certified Site Surveillance Technician (SST) (#06-3991) and a California Department of Public Health (CDPH) Certified Lead Sampling Technician (#20133), Sam Lardizabal, a California Certified Site Surveillance Technician (SST) (#03-3502) and a California Department of Public Health (CDPH) Certified Lead Inspector/Risk Assessor (#15084), and Robert Pitzer, a California Certified Site Surveillance Technician (SST) (#07-4235) and a California Department of Public Health (CDPH) Certified Lead Inspector/Risk Assessor (#16091).

The survey was conducted on April 26 to April 27, 2016 and on May 2 to May 3, 2016. Positive sample results from an asbestos survey conducted by Pacific Southwest Group dated January 30, 2006 are included in this report.

The survey included:

- An initial investigation to locate suspect asbestos containing materials
- The collection of bulk samples from suspect asbestos containing materials
- An investigation to locate suspect lead-based paint
- Use of a portable x-ray fluorescence (XRF) spectrum analyzer to test painted surfaces
- Collection of paint chips from painted surfaces determined to contain less than 1.0 mg/cm² and greater than the detection limit of the XRF (0.06 mg/cm²)
- Physical assessment of suspect materials
- Laboratory analysis of all collected suspect asbestos samples and paint chip samples.
- A visual inspection for OHM, including Universal Waste

The following materials were found to be Asbestos Containing Materials (ACM: asbestos 1% or greater):

	East Building			
Material	Location	Amount		
Black/Yellow Mastic	600-653, 1150-1151	16,000 SF		
Carpet Glue/Mastic	600-653	16,000 SF		
9x9 Brown VFT	Mezzanine 700,	1000 SF		
Brown Step Tread	Mezzanine Stairs	60 SF		
Black Mastic (Bottom Layer)	901-906, 910-915,933-941	3,000 SF		
Joint Compound	945	350 SF		
Mirror mastic	Bathroom mirrors @ 1026,977,980	50 SF		
Mastic	964	200 SF		
Roofing	North lower roof	20400 SF		
Roof Mastic	Penetrations, patch, HVAC, sleepers	500 SF		
Roofing	Main roof, South	100,575 SF		
TSI pipe elbows	Above 781,782 and 855 (Previous report)	8 Elbows		
12x12 White VFT and Mastic	855 – South East Corner (Previous report)	400 SF		
Floor Tile and mastic (Bottom Layers)	843-852 (Previous report)	1700 SF		
Floor Tile and mastic (Bottom Layers)	751,1015-1016 (Previous report)	8000 SF		
9x9 Grey VFt and Mastic	779 (Previous report)	160 SF		
Window Putty	Exterior Windows (Previous report)	73-1 Pane windows 9-9 Pane windows		
Lab Counter Tops/Cabinets (Assumed)	820	9 counters		
Lab Hoods (Assumed)	820	3 Hoods		

West Building			
Material	Location	Amount	
Floor tile mastic	154-156	500 SF	
Linoleum, beige	161	60 SF	
Floor tile mastic	128-130, 132-138 (Under carpet, bottom layers)	3200 SF	
Floor tile mastic	140-144	1000 SF	
Floor tile mastic	132	800 SF	
Floor tile mastic	145/149 Hallway	300 SF	
Floor tile mastic	207-209	400 SF	
Floor tile mastic	200-203, under carpet	400 SF	
Floor tile mastic	235,236,240,241,252-254,under carpet	800 SF	
Lab counter tops, black	211, 214, 217	12 counters	
Floor tile mastic	M206	600 SF	
Floor tile mastic	M205	300 SF	

West Building			
Material	Location	Amount	
Floor tile mastic	301-304	6500 SF	
Floor tile mastic	505-532	15000 SF	
Roofing	North roof	25000 SF	
Roofing	Mid roof, north	26000 SF	
Roofing mastic	Penetrations, patch, HVAC, sleepers	680 SF	
Mirror mastic	RRs; 513/514	50 SF	
Floor tile mastic	317	1200 SF	
Floor tile mastics	171-173 (Previous report)	300 SF	
Floor tile mastics	261, 262, 260 Hallway (Previous report)	1200 SF	
Floor tile mastics	255-259 (Previous report)	1000 SF	
Floor tile mastics	211-215, 217-220 (Previous report)	5000 SF	
Joint Compound	145 and M200-M206 Mezzanine (Previous report)	4000 SF	
Lab Hoods (assumed)	211,214, 27	3 Hoods	

Warehouse			
Material	Location	Amount	
Roofing mastic	Rooftop penetrations, patch		

Lab Building			
Material	Location	Amount	
Roofing mastic	Rooftop penetrations, HVAC ducts, patch, sleepers	60 SF	
Floor tile mastic	Interior floors	1200 SF	
Transite	Flame cabinets	2 cabinets	
Transite	Hood	1 hood	

Guard Shack			
Material	Location	Amount	
Roofing mastic	Rooftop penetrations, patch	20 SF	
HVAC mastic	Ducting	15 SF	

Credit Union		
Material	Location	Amount
Floor tile mastic (w/ACCM white VFT)	Under carpet	2450 SF
Roofing	Roof	3750 SF
Roofing mastic	Rooftop penetrations, patch	16 SF

The following materials were found to be Asbestos Containing Construction Materials (ACCM: asbestos less than 1% but greater than 0.1%):

West Building			
Material Location Amount			
Window putty	W exterior	3 (8 pane), 12 (1 pane)	

Lead Based Paint (LBP: 1.0 mg/cm² or greater), Lead containing paint containing at less than 1.0 mg/cm³ but greater than 0.06 mg/cm³), and components containing lead were detected at the following locations:

East Building – Lead Based Paint					
Room/Area	Component	Substrate	Color	Cond.	Rep.
708/749/748	Column/Structure	Metal	Gray	Intact	Structure throughout
743	Column/Structure	Metal	White	Intact	Structure throughout
743	Sliding door	Metal	Gray	Intact	1 each
756	Wall	Wood	Beige	Intact	324 SF
756	Wall	Wood	Beige	Intact	324 31
766	Column/Structure	Metal	Gray	Intact	Structure throughout
810	Column/Structure	Metal	Gray	Fair	Structure throughout
832	Beam	Metal	White	Intact	Structure throughout
942	Column	Metal	Yellow	Intact	1 each
947	Window	Metal	White	Poor	4 windows
964	Corner guard	Metal	Yellow	Fair	2
968	Column/Structure	Metal	Red	Fair	Structure throughout
1003	Wall guard	Metal	Yellow	Intact	1
1004	Wall guard	Metal	Yellow	Intact	1
1033 2nd flr.	Ladder	Metal	Brown	Intact	1
Exterior	Speed bump	Concrete	Yellow	Poor	200 SF
Exterior	Bollards	Metal	Red	Fair	4 each
Exterior	Fire hydrant	Metal	Red	Intact	2 each
Exterior	Fire hydrant	Metal	Red	Fair	1
Exterior	Fire sprinkler	Metal	Red	Fair	1
Exterior	Bollard	Metal	Yellow	Intact	20 each
Exterior	Downspout	Metal	Gray	Intact	12
Exterior	Fire riser (pipe)	Metal	Red/white	Intact	1
Exterior	Fire hydrant	Metal	Red	Intact	3
Exterior	Guard rail	Metal	Yellow	Intact	3 each

	East Building – Lead Containing Components					
Room/Area Component Substrate Color Cond. Rep.						
1032 RR	Tile wall	Ceramic	White	Intact	600 SF	
1031 JC	J. sink	Porcelain	White	Intact	1	
1027 RR	Tile wall	Ceramic	White	Intact	800 SF	

	West	Building – Lead	Based Paint		
Room/Area	Component	Substrate	Color	Cond.	Rep.
404/406	Column/Structure	Metal	Yellow	Fair	Structure throughout
404/406	Column/Structure	Metal	Blue	Fair	Structure throughout
404/406	Sprinkler pipe	Metal	Red	Intact	15 LF
M408	Floor drain	Metal	White	Intact	1 each
509/519	Column/Structure	Metal	Yellow	Intact	Structure throughout
524	Column/Structure	Metal	Brown	Intact	Structure throughout
505	Column/Structure	Metal	Yellow	Fair	Structure throughout
501/502	Safety stripe	Concrete	Yellow	Poor	150 LF
Exterior	Fire riser pipe	Metal	Red	Intact	1 each
Exterior	Bollard	Metal	Red	Intact	2 each
High bay interior	Structure Steel	Metal	Red	Intact	T/0

West Building – Lead Containing Paint						
Room/Area	Component	Substrate	Color	Cond.		
404/406	Decking	Metal	Gray	Intact		
404/406	Stair tread	Metal	Gray	Intact		
404/406	Handrail	Metal	Gray	Intact		
404/406	Stringer	Metal	Gray	Intact		
Exterior	Wall	Concrete	White	Intact		

West Building – Lead Containing Components					
Room/Area	Component	Substrate	Color	Cond.	Rep.
113	Tile baseboard	Ceramic	White	Intact	30 LF
113	Tile wall	Ceramic	White	Intact	200 SF
104	Tile wall	Ceramic	Grey	Intact	200 SF
100	Tile floor	Ceramic	Brown	Intact	1500 SF
M409	Tile wall	Ceramic	White	Intact	520 SF
M409	Tile counter	Ceramic	White	Intact	15 SF
M406	Tile wall	Ceramic	White	Intact	520 SF
M406	Tile counter	Ceramic	White	Intact	50 SF

Warehouse – Lead Based Paint					
Room/Area Component Substrate Color Cond. Rep.					
Exterior	Pipe	Metal	Red	Intact	40 LF

High Bay Storage – Lead Based Paint					
Room/Area	Component	Substrate	Color	Cond.	Rep.
Exterior	Pipe	Metal	Red	Intact	1 pipe

Guard Shack – Lead Based Paint					
Room/Area	Component	Substrate	Color	Cond.	Rep.
Exterior	Curb	Concrete	Yellow	Poor	60 LF
Exterior	Curb	Concrete	Red	Fair	200 LF

Credit Union – Lead Containing Component					
Room/Area	Component	Substrate	Color	Cond.	Rep.
Main room	Cabinets	Wood (laminate)	White	Intact	Upper/lower

Other Hazardous Materials

Other hazardous materials, including PCBs and Universal Wastes, may be present. Fluorescent ballasts were identified in the buildings. Freon in the HVAC systems, fluorescent light bulbs and fixtures are also present. All hazardous materials should be removed and properly disposed of prior to demolition/renovation activities in accordance with the California Code of Regulations, Title 22, Div. 4.5, Chapter 23.

METHODOLOGY

Asbestos Sampling

Bulk samples of suspect asbestos containing materials were collected and analyzed by polarized light microscopy (PLM) at Environmental Microbiology Laboratories (EMLab). Composite samples were separated into layers by EMLab. EMLab was instructed to stop analysis on the first positive result for each homogenous area.

Environmental Microbiology Laboratory is an EPA accredited laboratory located at 17461 Derian Avenue in Irvine, California. Samples approximately 1 cubic centimeter (cc) in size were obtained using appropriate sampling equipment. The sampling area was misted with water to minimize the potential for the release of airborne fibers. Collected samples were placed in sealed plastic bags, labeled and transported under chain of custody to EMLab by hand delivery.

Materials found to contain 1% of greater asbestos were identified as Asbestos Containing Materials (ACMs). Less than 1% chrysotile asbestos (not associated with a ACM component such as floor tile/mastic) was detected in eight samples. These samples were re-analyzed by EMLab P&K using the Asbestos/EPA 1000 point count (EPA-600/M4-82-020 (SOP 01262)) method. Samples determined to contain greater than 0.1% asbestos were identified as Asbestos Containing Construction Materials (ACCMs).

Asbestos Sample Collection

Prior to the collection of any samples, homogeneous sampling areas were identified in accordance with Asbestos Hazard Emergency Response Act (AHERA) protocol (40 CFR part 763). A homogeneous

sampling area is described as any material that is identical in appearance, color, texture, and installed at the same time.

Assessing the Current Condition of the Material

Suspect asbestos material was placed in one of three categories based on a visual inspection: good, damaged, or significantly damaged. To aid in reliable and repeatable application of the three AHERA condition categories, rough quantitative measures of damage were used. If the damage or deterioration covered roughly one tenth (if evenly distributed) or one quarter (if localized) of the surface, or more, the suspect material was rated as being significantly damaged. A complete asbestos sampling table is provided in the Appendices.

Lead Sampling

XRF Testing

A lead-based paint inspection was conducted on building components using portable x-ray fluorescence (XRF) spectrum analyzers Niton XLP 300A, (serial numbers 10129 and 91830). XRF readings were taken using the "Unlimited" mode. "Unlimited" mode measurements have no predetermined testing length and automatically adjust to account for various types of substrates and materials densities. The precision of the XRF readings is proportional to the square root of the number of x-rays counted by the scanner. The longer the test, the higher the level of precision as compared against the set threshold of 1.0 mg/cm². No substrate correction is required for testing using the "Unlimited" mode.

XRF readings were made on representative components. Testing combinations were tested non-destructively by holding the Niton XLP 300A against the surface being tested. At each XRF sample location the Niton XLP 300A shutter is opened, and one reading was made. Results of each test were read and recorded on the XRF Field Data Forms, included in the Attachments.

To ensure that the XRF was working properly various quality control tests were performed before, during and after the on-site work. At the beginning of the workday, three start-up validation measurements were made in the "test" mode, using the calibration check standard associated with Niton XLP 300A. This painted standard contains a known quantity of lead and allows the XRF operator to determine whether the instrument is functioning within acceptable tolerance ranges for accuracy and precision, as determined by the manufacturer.

In addition, calibration readings were taken on the red 1.02 mg/cm² Standard Reference Material (SRM) paint film. A reading of >1.0 mg/cm² was considered positive for lead based paint.

XRF Sample Data

Test # Identifies the XRF shot or paint chip sample.

Room Equivalent Identifies the room or area

Side Identifies the side of the room tested (side 'A' faces Paramount Blvd.)

Component
Substrate
Color

Identifies the actual component tested.
The material of the tested component.
The visible color of the upper coatings.

666 East Dyer Road

Hazardous Materials Survey

Condition The condition of the paint was determined, as defined in the *Guidelines for the*

Evaluation and Control of Lead-Based Paint Hazards in Housing:

Intact – the entire surface is intact.

Fair – less than or equal to ten percent of the total surface area of the

component is deteriorated.

Poor – more than ten percent of the total surface area of the component is

deteriorated.

Result (mg/cm²) Result (ppm) The reading displayed by the XRF in milligram per square centimeter.

Paint chip results expressed in parts per million.

Rep Identifies the number or amount of a component or surface.

Paint Chip Sampling

Paint chip samples were collected when an XRF reading was below 1.0 mg/cm², but above 0.06 mg/cm². Seven (7) bulk paint chip samples were collected for the project. These samples were analyzed for lead content by Atomic Absorption Spectrophotometry at LA Testing Laboratories. LA Testing is an EPA accredited laboratory located at 520 Mission Street in South Pasadena, California. The collected sample were assigned a unique sample identification number, placed in sealed containers, labeled, and transported under chain of custody to LA Testing. Samples were reported by weight of lead/weight of sample, either as a percentage or as parts/million (ppm). Materials determined to contain greater than 5000 ppm are considered lead-based paint. Paint found to contain lead at greater than 600 ppm is considered lead containing paint by the Consumer Products Safety Commission (CPSC). A complete lead sampling table is provided in the appendices.

Other Hazardous Waste

A visual inspection for OHW was conducted at the facility. The following tables summarizes OHW observed during the inspection.

East Building				
Item	Amount	Location		
Elugrascant light fixture: 1 hulb (globa)	47 fixtures	Throughout		
Fluorescent light fixture; 1 bulb (globe)	47 bulbs	Throughout		
	1662 fixtures			
Fluorescent light fixture; 4' (4 bulb)	6648 bulbs	Throughout		
	1662 ballasts			
	32 fixtures			
Fluorescent light fixture; 2' "U" bulb	32 bulbs	Throughout		
	32 ballasts			
	619 fixtures			
Fluorescent light fixture; 4' (2 bulb)	1238 bulbs	Throughout		
	619 ballasts			
	213 fixtures			
Fluorescent light fixture; 4' (3 bulb)	639 bulbs	Throughout		
	213 ballasts			

	East Building	
Item	Amount	Location
	711 fixtures	
Fluorescent light fixture; 8' (2 bulb)	1422 bulbs	Throughout
	711 ballasts	
	3 fixtures	
Fluorescent light fixture; 4' (6 bulb)	18 bulbs	Throughout
	3 ballasts	
	4 fixtures	
Fluorescent light fixture; 2' (1 bulb)	4 bulbs	Throughout
	4 ballasts	
	3291 fixtures	
Total Fluorescent	10048 bulbs	Throughout
	3291 ballasts	
Emergency Lights	115 units	Throughout
Exit signs	81 signs	Throughout Throughout
HVAC units	74 units	Rooftop, ground exterior
Chilled water systems (glycol)	2	Room 916
Transformers	44	Rooms 701, 708, 724, 725, 743, 751, 770, 810, 816, 824, 833, 907, 916, 930, 942, 969, 970, 971, 1003, 1004, 1020
Thermostats (no mercury)	31	Throughout
Thermostats with mercury	14	Rooms 601, 721, 752, 805, 810, 855, 903, 907, 909, 947, M980, 1023
Drinking fountain (Freon)	1	Room 953
A/C wall units (Freon)	4	Rooms 705, 809, 832, 1008
Walk-in cooler	2	Kitchen, E exterior
Built-in refrigerator	1	Kitchen
Ice machine	1	Kitchen
PCB contamination	15400 SF	Rooms 729-731, 734, 735, 738, 741
Fire suppression system (PCL300)	2 tanks	Kitchen

West Building		
Item	Amount	Location
	50 fixtures	
Fluorescent light fixture; 2' "U" bulb	50 bulbs	Throughout
	50 ballasts	
	673 fixtures	
Fluorescent light fixture; 4' (4 bulb)	2692 bulbs	Throughout
	673 ballasts	
Fluorescent light fixture; 4' (2 bulb)	199 fixtures	
	398 bulbs	Throughout
	199 ballasts	
Fluorescent light fixture; 4' (1 bulb)	20 fixtures	Throughout
	20 bulbs	Throughout

	West Building	
	20 ballasts	
	904 fixtures	
Fluorescent light fixture; 4' (3 bulb)	2714 bulbs	Throughout
	904 ballasts	
Fluorescent light fixture; globe	115 fixtures	Throughout
Tradiescent light hixture, globe	115 bulbs	Throughout
	5 fixtures	
Fluorescent light fixture; 8' (2 bulb)	10 bulbs	Throughout
	5 ballasts	
	1966 fixtures	
Total Fluorescent	5999 bulbs	Throughout
	1966 ballasts	
Emergency Lights	72 units	Throughout
Exit Signs	55 signs	Throughout
HVAC units (Freon)	36	Rooftop
Transformers	8	Rooms 229, 227, 245, 306, 406, 415,
Transformers		505
Thermostats (no mercury)	26	Throughout
Thermostats with mercury	8	Rooms 114, 167, 140, 147, 246, 320,
memostats with mercury	O	408, 510
Drinking fountains (Freon)	2	Rooms 222, M409,
Lead-acid batteries (12 volt)	14	Room 141, M202

Warehouse		
Item	Amount	Location
	31 fixtures	
Fluorescent light fixture; 8' (2 bulb)	62 bulbs	Throughout
	31 ballasts	
Emergency lights	4 units	Interior
Transformer	1	E wall
Thermostat (no mercury)	1	Interior
HVAC unit	1	W exterior

Lab Building		
Item	Amount	Location
Fluorescent light fixture; 4' (4 bulb)	14 fixtures	
	56 bulbs	Throughout
	14 ballasts	
	6 fixtures	
Fluorescent light fixture; 4' (2 bulb)	12 bulbs	Throughout
	6 ballasts	
Emergency light	1 unit	Interior

Lab Building		
Item	Amount	Location
Transformers	2	Interior
Thermostat with mercury	1	Interior
Test equipment (oil; possible PCBs)	1	Interior

High Bay Storage		
Item	Amount	Location
Light fixtures	3	Exterior
Fluorescent light fixture; 4' (2 bulb)	6 fixtures	
	12 bulbs	Interior
	6 ballasts	
Emergency lights	1 unit	Interior
Exit sign	1	Interior
Thermostat with mercury	1	S wall
HVAC unit	1	Exterior

Guard Shack		
Item	Amount	Location
	2 fixtures	
Fluorescent light fixture; 4' (2 bulb)	4 bulbs	Interior
	2 ballasts	
HVAC unit	1	Roof
Transformer	1	Exterior

Credit Union		
Item	Amount	Location
	1 fixture	
Fluorescent light fixture; 4' (4 bulb)	4 bulbs	Throughout
	1 ballast	
	68 fixtures	
Fluorescent light fixture; 4' (2 bulb)	136 bulbs	Throughout
	68 ballasts	
	3 fixtures	
Fluorescent light fixture; 2' "U" bulb	3 bulbs	Throughout
	3 ballasts	
HVAC unit	1	Mech. room/exterior
A/C wall mount	1	W wall
Thermostat (no mercury)	1	Interior
Exit signs	2	Main room

Hazardous Materials Shed and Small Guard Shack		
Item	Amount	Location
	14 fixtures	
Fluorescent light fixture; 8' (2 bulb)	28 bulbs	Haz. shed
	14 ballasts	
	2 fixtures	
Fluorescent light fixture; small	3 bulbs	Small guard shack
	2 ballasts	
A/C unit, roof mount	1 unit	Small guard shack

NE Trailer		
Item	Amount	Location
Fluorescent light fixture; 4' (2 bulb)	16 fixtures	
	32 bulbs	
	16 ballasts	Intorior
	1 fixture	Interior
Fluorescent light fixture; 2' (2 bulb)	2 bulbs	
	1 ballast	
HVAC unit	1 unit	Exterior

Discussion and Recommendations

Asbestos

ACM and ACCM (west building window putty) were found in the buildings inspected. These materials were observed to be in good to damaged condition. Cal OSHA requires the use of a licensed asbestos removal contractor to remove ACM or greater than 100 square feet of ACCM.

Regulatory Requirements:

Listed below is a summary of regulations that apply if the asbestos containing materials are removed. It is not meant to be conclusive. The contractor is responsible for ensuring that they are in compliance with all local, state and federal requirements regarding asbestos containing materials:

- 1. A property owner has the responsibility for ensuring that occupants are informed and that asbestos-containing material is maintained in good condition. Custodial or maintenance staff must be trained regarding proper handling of the material as part of an ongoing operations and maintenance operation. CalOSHA 8 CCR 1529, California Health and Safety Code Section 25915, and Proposition 65.
- 2. ACM that is classified by OSHA as TSI and other/miscellaneous materials are present. Removal of these materials is considered a Class I and Class II activities according to CalOSHA

- regulations. Work practices and engineering controls for Class I and II work are specified in CalOSHA 8 CCR 1529.
- 3. Notifications and abatement practices must follow the South Coast Air Quality Management District (SCAQMD) District Rule 1403.

Lead

Lead was detected on painted surfaces at the properties inspected. The condition of the painted surfaces was intact to poor condition. Lead was also detected in ceramic tile and sinks. These materials should be further tested and characterized once removed and segregated, prior to disposal.

Composite waste samples should be analyzed for Total Threshold Limit Concentration (TTLC) by USEPA reference method SW846. If the concentration of lead is greater than 1000 mg/kg the sample must be disposed of by a landfill which can handle such wastes. If the concentration is less than 50 mg/kg the sample may be disposed of as construction debris, if it is to remain in California. If the result falls between 50 mg/kg and 350 mg/kg, the sample must be further analyzed by the Waste Extraction Test (WET) for Soluble Threshold Limit Concentration (STLC) as described in 22 CCR 66261.24a. If this concentration exceeds 5 mg/liter the sample must be handled and disposed of as hazardous waste.

Additional Information

Aurora has relied in good faith upon representations and information furnished by individuals with respect to operations and existing property conditions to the extent that they have not been contradicted by data obtained from other sources. Accordingly, Aurora accepts no responsibility for any deficiencies, omissions, misrepresentations, or fraudulent acts of persons interviewed. In addition, Aurora will not accept liability for any loss, injury, claim, or damage arising directly or indirectly from any use or reliance on this report. Aurora makes no warranty, expressed or implied.

Material quantities are listed within this document. These quantities are meant for identification of materials and are not intended to be used for removal bidding purposes. Every effort was made to detect asbestos-containing flooring under carpet and ceramic tile, however, there may be instances where asbestos-containing flooring exists beneath carpet or ceramic tile that was not detected.

Any suspect materials that may be found during construction in concealed areas such as wall cavities, below ground level, and other hidden spaces should be tested prior to disturbance.

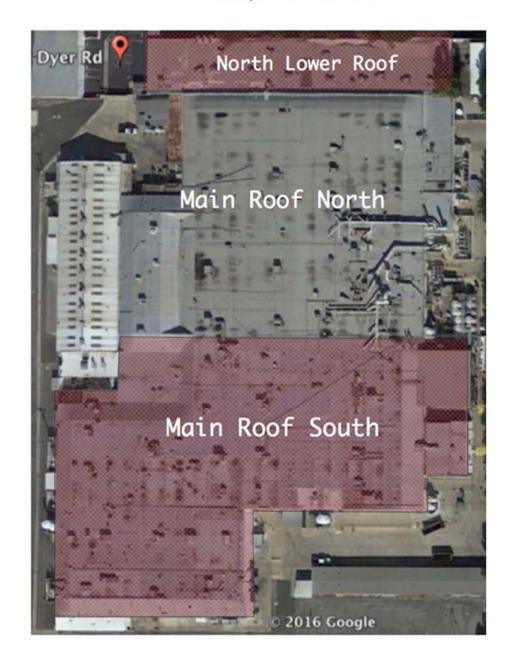
Nor is this document intended as a contract manual. Work methods and sequence, coordination of participants, applicable codes, engineering controls, required submittals, and notifications should in all cases be addressed in a separate and independent bidding and contract document.

Appendices

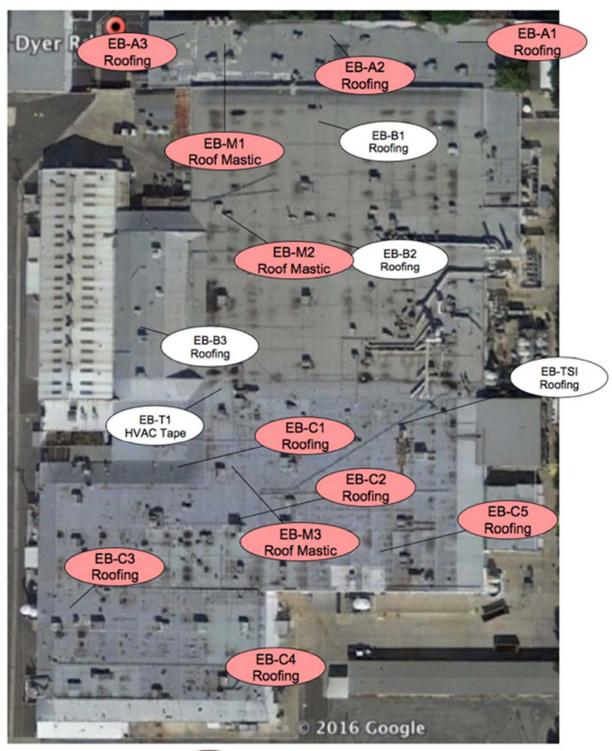
Sample Location Diagrams

Key Terms

ACM = Asbestos Containing Material

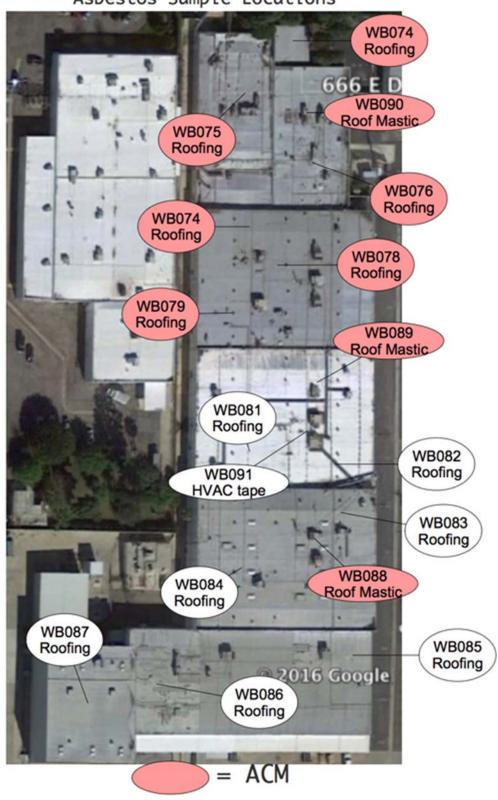

ACCM = Asbestos Containing Construction Material

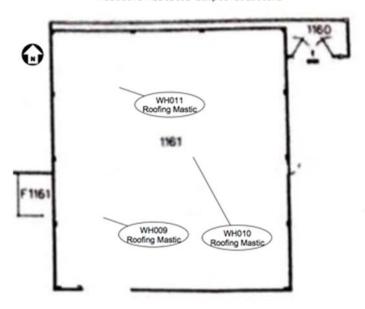
LBP = Lead Based Paint

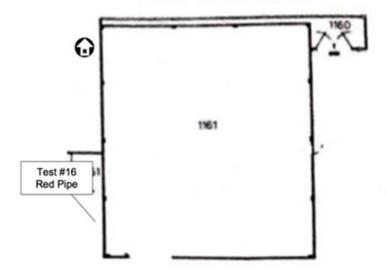

LCC = Lead Containing Component

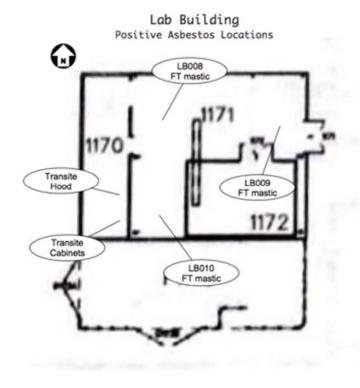
LCP = Lead Containing Paint

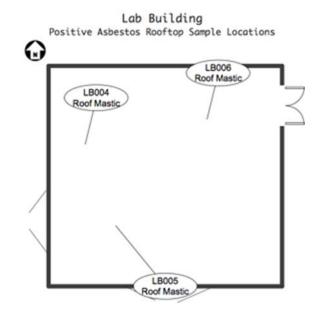
East Building - Roof Asbestos Sample Locations


East Building - Roof Asbestos Sample Locations

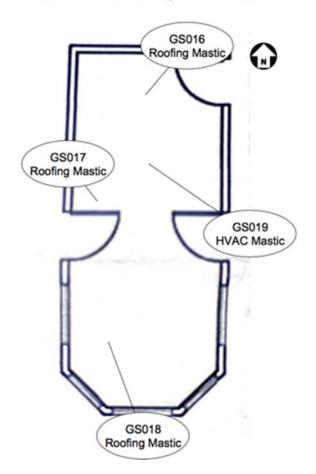

West Building - Roof Asbestos Sample Locations

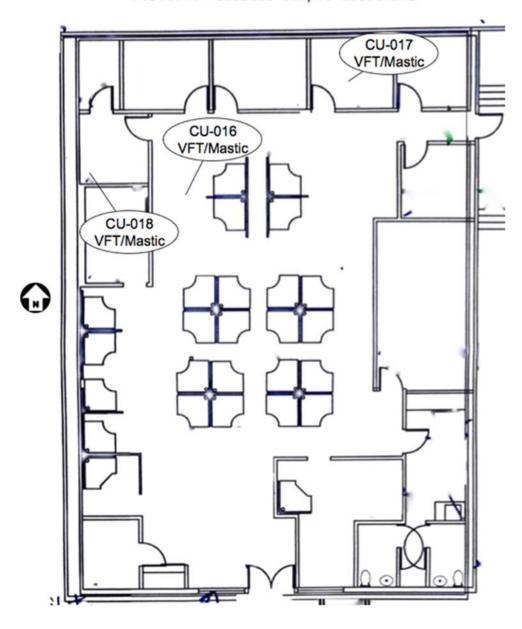

West Building - Roof Asbestos Sample Locations




Warehouse (Roof)
Positive Asbestos Sample Locations

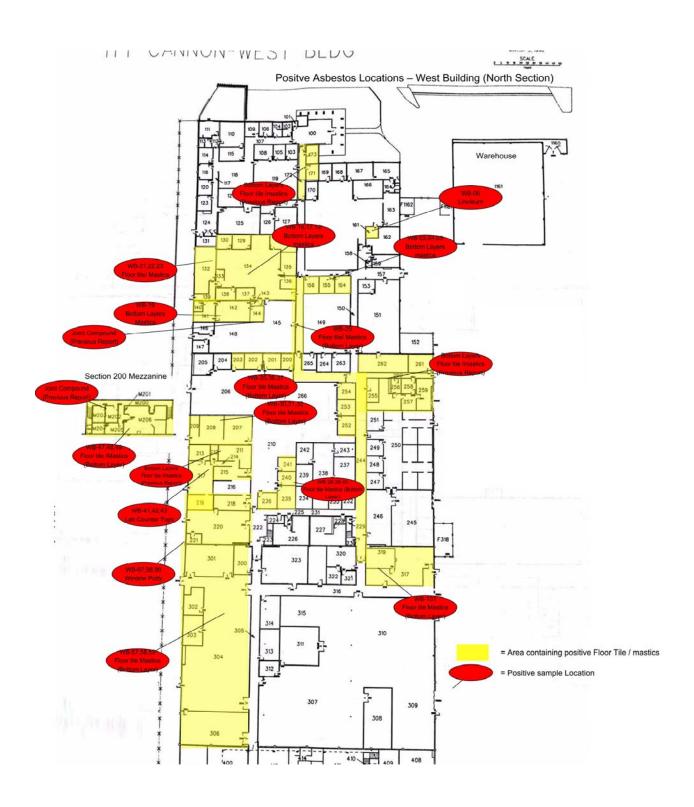
Warehouse Positive Lead Test Locations

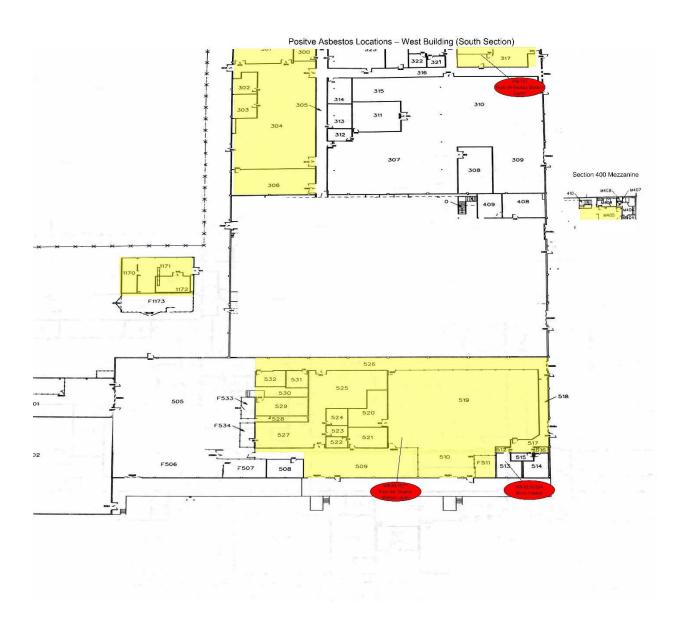


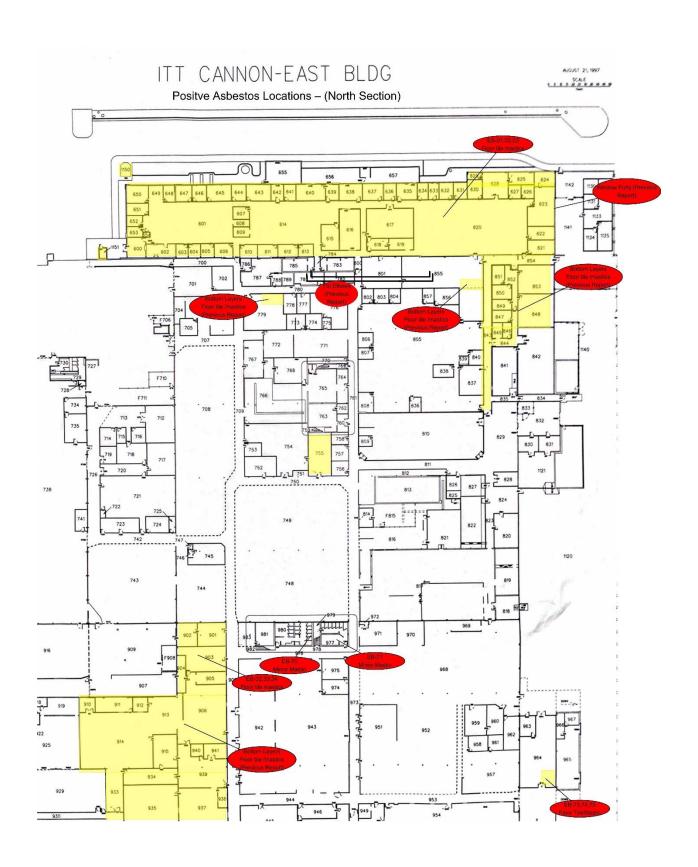

Guard Shack Positive Asbestos Sample Locations

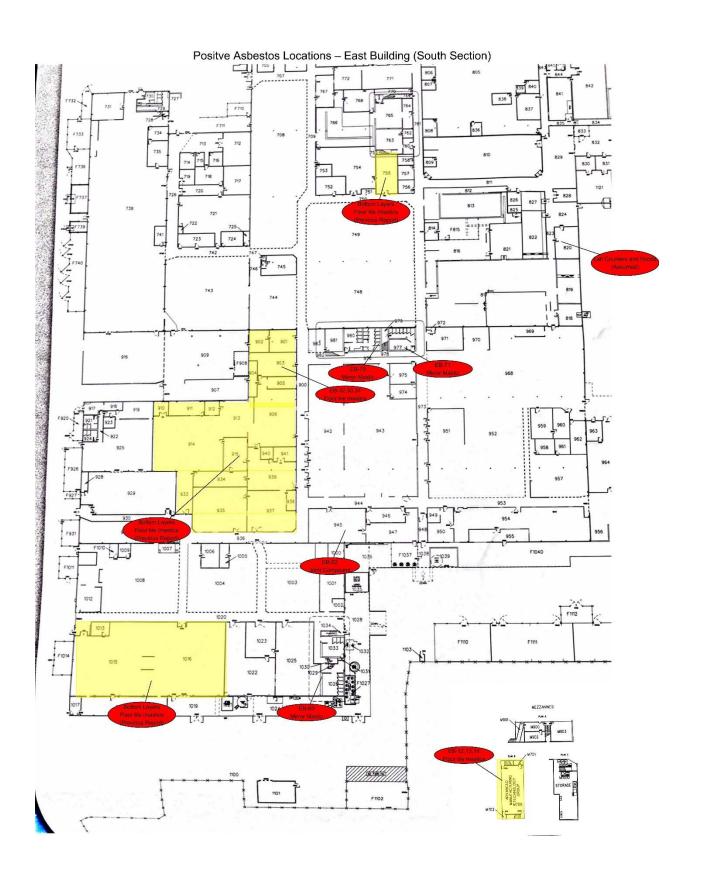
Guard Shack Positive Lead Test Locations

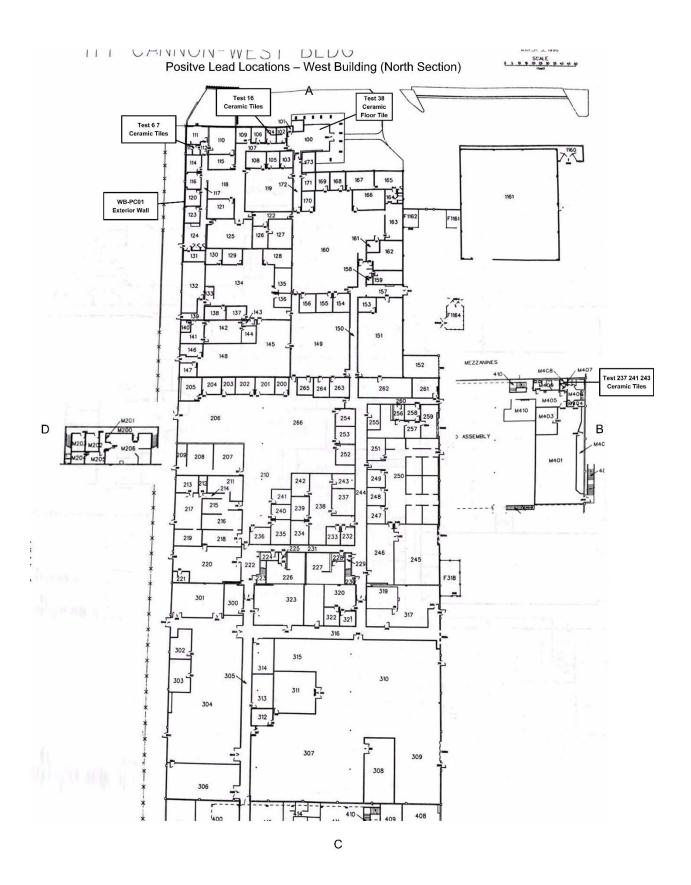


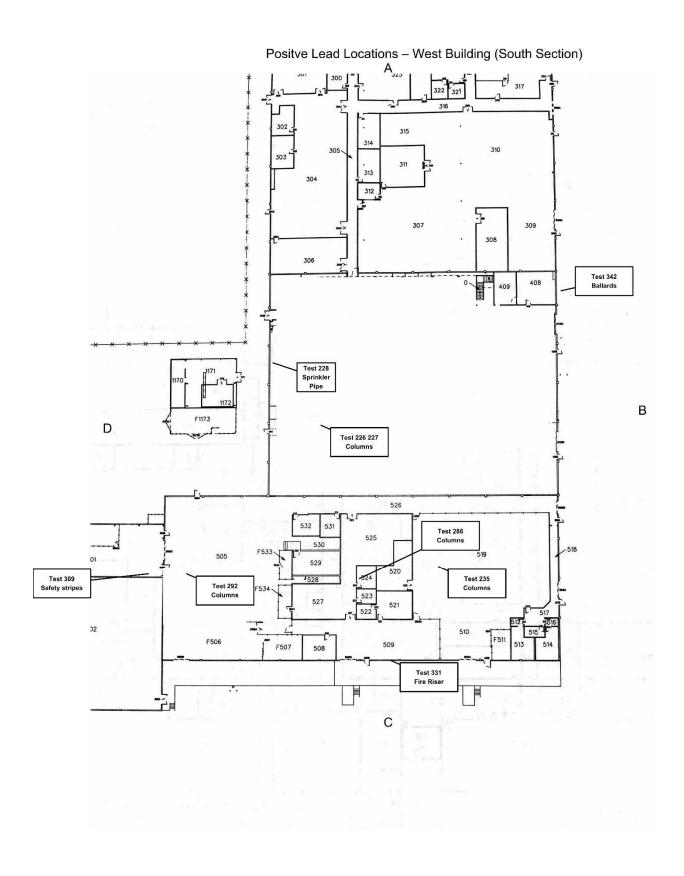

Credit Union Positive Asbestos Sample Locations

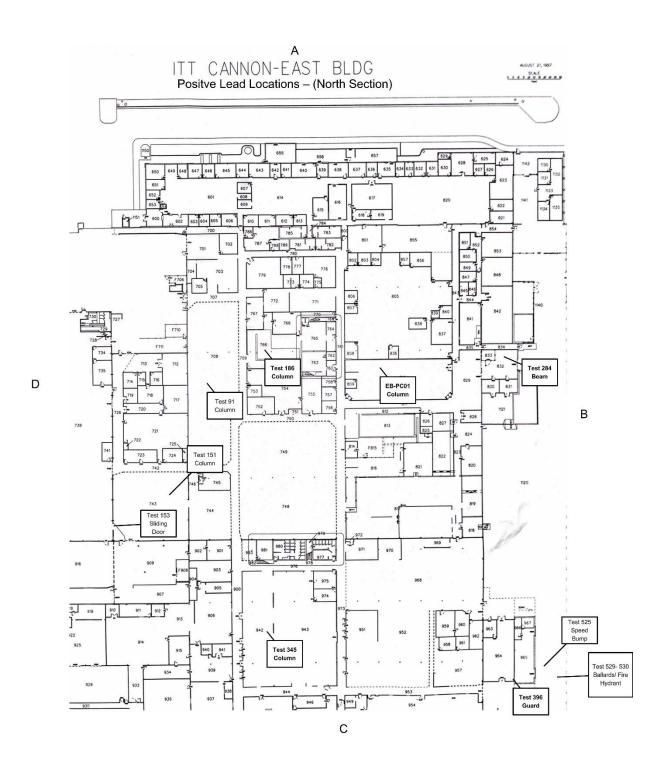


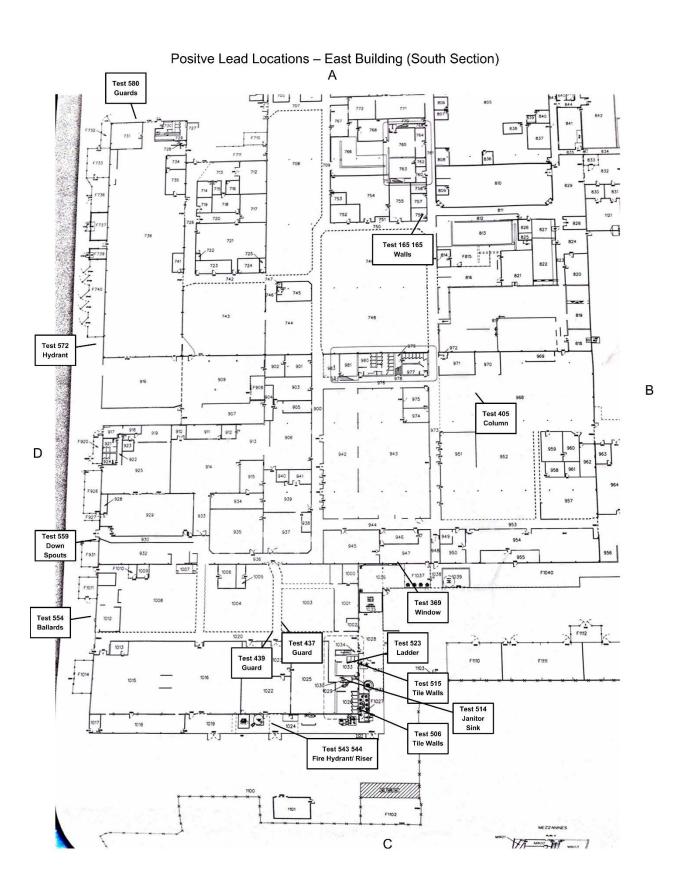

Credit Union Rooftop Positive Asbestos Sample Locations CU-19 Roofing CU-20 Roofing CU-21 Roofing CU-22 Roofing Mastic


Credit Union
Positive Lead Test Location





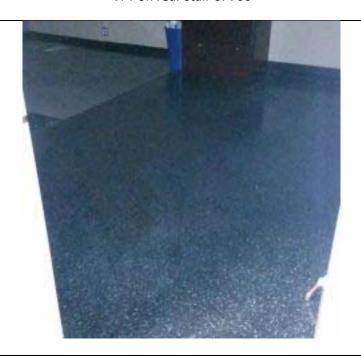




Photos

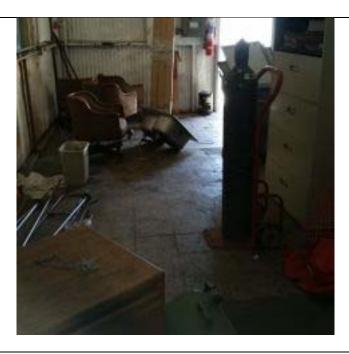
Asbestos Photos

East Building Asbestos Photos


Mastics under 600-653

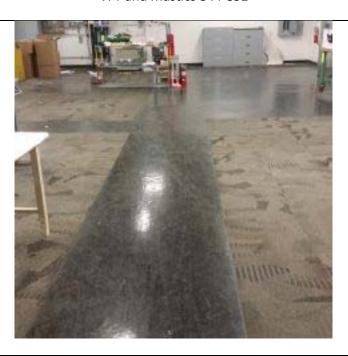
9x9 VFT under carpet at 700

VFT on rear stair of 700


VFT Mastics under 901-906, 910-915,933-941

Joint Compound 945

Mirror Mastics


VFT Matics 964

TSI Elbows

VFT and Mastics 844-852

Bottom Layer VFT and Mastics 1015-1016

West Building Asbestos

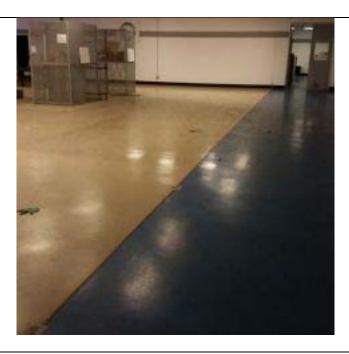
Bottom layer Mastics – 154-156

Linoleum 161

VFT Mastics 128-130, 132-138 (Under carpet, bottom layers)

VFT Mastics – 207-209

VFT Mastics - 200-203, 235,236,240,241, under carpet


Transite Counter Tops – 211,214,217

VFT mastics, M205-M206


VFT Mastics, 301-304

VFT Mastics – 505-532

Mirror Mastics – 513-514

VFT Mastics – 317

Window Putty (less than 1%)

Lab Building

VFT Mastics – Lab

Transite hoods and cabinets - Lab

Guard Shack



HVAC Mastics

Penetration Mastics

Credit Union

Floor Tile and Mastics – Credit Union Floor

Lead Photos

East Building

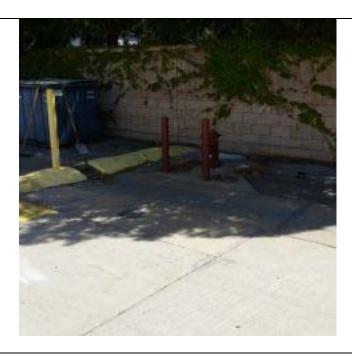
Support Columns

Support Columns

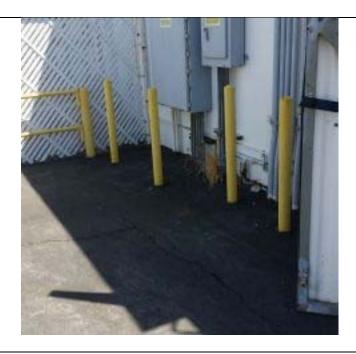
Sliding Door

756 Wall

947 Window


Corner Guard

1033 Ladder


Speed Bump

Bollards and Fire hydrant

Fire sprinkler/Riser

Bollards

Down Spout

Fire Riser

Guard Rail

Bathroom Ceramic Wall Tiles

Janitor Sink

West Building Lead

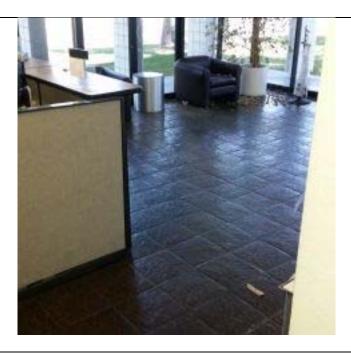
404/406 Columns

Section 500 Columns

Fire Riser

Safety Stripes

Bollards


404/406 Structure (Lead Containing Paint)

Exterior West Wall (Lead Containing Paint)

113 Ceramic Wall Tiles and Baseboards

Ceramic Floor Tile

M406/M409 Ceramic Tiles

Warehouse

Pipe

Guard Shack

Red and Yellow Curbs

Credit Union

Complete Laboratory Summary Tables

Complete Asbestos Summary Tables

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
East Building	EB-01	12x12 Yellow VFT		Good	Low		None Detected	NA
East Building	EB-01	Black/Yellow Mastic		Good	Low		2% Chrysotile	NA
East Building	EB-02	12x12 Yellow VFT		Good	Low		None Detected	NA
East Building	EB-02	Black/Yellow Mastic		Good	Low		Not Analyzed	NA
East Building	EB-03	12x12 Yellow VFT	600-653	Good	Low	16,000 SF	None Detected	NA
East Building	EB-03	Black/Yellow Mastic		Good	Low		Not Analyzed	NA
East Building	EB-04	Carpet Glue/Mastic		Good	Low		2% Chrysotile	NA
East Building	EB-05	Carpet Glue/Mastic		Good	Low		Not Analyzed	NA
East Building	EB-06	Carpet Glue/Mastic		Good	Low		Not Analyzed	NA
East Building	EB-07	12x12 Blue VFT/Mastic	801,843,855,839,779, 700-705,981,1025 (Top Layers)	Good	Low	20,000 SF	None Detected	NA
East Building	EB-08	12x12 Blue VFT/Mastic	- 001,0 10,000,000,775,700 700,001,1025 (10p 2d)010,1	Good	Low	20,000 31	None Detected	NA
East Building	EB-09	12x12 Blue VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-10	Carpet Glue	805	Good	Low	8000 SF	None Detected	NA
East Building	EB-11	12x12 White VFT/Glue	805 @ NW Door	Good	Low	25 SF	None Detected	NA
East Building	EB-12	9x9 Brown VFT		Good	Low		5% Chrysotile	NA
East Building	EB-12	Black Mastic		Good	Low		None Detected	NA
East Building	EB-13	9x9 Brown VFT	Mezzanine 700	Good	Low	1000 SF	Not Analyzed	NA
East Building	EB-13	Black Mastic	iviezzanine 700	Good	Low	1000 SF	None Detected	NA
East Building	EB-14	9x9 Brown VFT		Good	Low		Not Analyzed	NA
East Building	EB-14	Black Mastic		Good	Low		None Detected	NA
East Building	EB-15	12x12 Grey VFT		Good	Low		None Detected	NA
East Building	EB-15	Black/Yellow Mastic		Good	Low		<1% Chrysotile	<0.1
East Building	EB-16	12x12 Grey VFT	772 771 707 700 001 002	Good	Low	3500 SF	None Detected	NA
East Building	EB-16	Yellow Mastic	772,771,787,788,901-902,	Good	Low	3500 SF	None Detected	NA
East Building	EB-17	12x12 Grey VFT	Good Low		None Detected	NA		
East Building	EB-17	Yellow Mastic		Good	Low		None Detected	NA
East Building	EB-18	Brown Step Tread	Marzonina Stairs	Good	Low	60.55	2% Chrysotile	NA
East Building	EB-18	Brown Mastic	Mezzanine Stairs	Good	Low	60 SF	None Detected	NA
East Building	EB-19	Linoleum/Mastic	Mezzanine Landing	Good	Low	30 SF	None Detected	NA
East Building	EB-20	12x12 Teal VFT/Mastic	763,901-937, 945, 946,947	Good	Low	12,000 SF	None Detected	NA

666 East Dyer Road Hazardous Materials Survey

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
East Building	EB-21	12x12 Teal VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-22	12x12 Teal VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-23	12x12 Black VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-24	12x12 Black VFT/Mastic	756,762,723,983,974, 975,971,1025	Good	Low	10, 000 SF	None Detected	NA
East Building	EB-25	12x12 Black VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-26	12x12 Beige VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-27	12x12 Beige VFT/Mastic	725	Good	Low	50 SF	None Detected	NA
East Building	EB-28	12x12 Beige VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-29	12x12 Blue VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-30	12x12 Blue VFT/Mastic	712-725	Good	Low	7000 SF	None Detected	NA
East Building	EB-31	12x12 Blue VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-32	Beige VFT (Bottom layer)		Good	Low		None Detected	NA
East Building	EB-32	Black Mastic (Bottom Layer)		Good	Low		2% Chrysotile	NA
East Building	EB-33	Beige VFT (Bottom layer)	903,905,906,939	Good	Low	3,000 SF	None Detected	NA
East Building	EB-33	Black Mastic (Bottom Layer)	905,905,906,959	Good	Low	3,000 3F	Not Analyzed	NA
East Building	EB-34	Beige VFT (Bottom layer)		Good	Low		None Detected	NA
East Building	EB-34	Black Mastic (Bottom Layer)		Good	Low		Not Analyzed	NA
East Building	EB-35	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-36	12x12 Grey VFT/Mastic	939	Good	Low	96 SF	None Detected	NA
East Building	EB-37	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-38	VFT (Bottom layer)	903 (mezzanine)	Good	Low	1200 SF	<1% Chrysotile	0.1
East Building	EB-38	mastic	505 (Mezzanine)	Good	Low	1200 31	None Detected	NA
East Building	EB-39	Brown Stair Tread	903 (mezzanine)	Good	Low	150 SF	None Detected	NA
East Building	EB-40	18x18 Multi-color VFT/Glue		Good	Low		None Detected	NA
East Building	EB-41	18x18 Multi-color VFT/Glue	929	Good	Low	4800 SF	None Detected	NA
East Building	EB-42	18x18 Multi-color VFT/Glue		Good	Low		None Detected	NA
East Building	EB-43	6" Covebase/mastic	929	Good	Low	200 LF	None Detected	NA
East Building	EB-44	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-45	12x12 Grey VFT/Mastic	M1000 Mezzanine	Good	Low	80 SF	None Detected	NA
East Building	EB-46	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-47	Stair tread	M1000 Mezzanine	Good	Low	85 SF	None Detected	NA
East Building	EB-48	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-49	12x12 Grey VFT/Mastic	Locker Room 828	Good	Low	200 SF	None Detected	NA
East Building	EB-50	12x12 Grey VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-51	Drywall W/ Joint Compound		Good	Low		None Detected	NA
East Building	EB-52	Drywall W/ Joint Compound	741,731,730,729	Good	Low	Through Out	None Detected	NA
East Building	EB-53	Drywall W/ Joint Compound		Good	Low	_	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
East Building	EB-54	12x12 Brown VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-55	12x12 Brown VFT/Mastic	734,735,741	Good	Low	700 SF	None Detected	NA
East Building	EB-56	12x12 Brown VFT/Mastic		Good	Low		None Detected	NA
East Building	EB-57	Fiber panel glue	729	Good	Low	800 SF	None Detected	NA
East Building	EB-58	plaster	730	Good	Low	200 SF	None Detected	NA
East Building	EB-59	Drywall	762	Damaged	Low	Through Out	None Detected	NA
East Building	EB-59	Beige plaster	762	Damaged	Low	500 SF	<1% Chrysotile	<0.1
East Building	EB-60	Drywall	1022 Mezz.	Damaged	Low	Through Out	None Detected	NA
East Building	EB-60	Joint Compound	1022 Mezz.	Damaged	Low	Through Out	None Detected	NA
East Building	EB-61	Drywall	900	Damaged	Low	Through Out	None Detected	NA
East Building	EB-61	Joint Compound	900	Damaged	Low	Through Out	None Detected	NA
East Building	EB-62	Drywall	945	Damaged	Low	Through Out	None Detected	NA
East Building	EB-62	Joint Compound	945	Damaged	Low	350 SF	2% Chrysotile	NA
East Building	EB-63	Drywall	820	Damaged	Low	Through Out	None Detected	NA
East Building	EB-63A	Drywall	922 Kitchen	Damaged	Low	Through Out	None Detected	NA
East Building	EB-63A	Joint Compound	922 Kitchen	Damaged	Low	Through Out	None Detected	NA
East Building	EB-64	Black floor coating	Through Out	Good	Low	Through Out	None Detected	NA
East Building	EB-65	Green floor coating	Through Out	Good	Low	Through Out	None Detected	NA
East Building	EB-66	Grey floor coating (smooth)	Through Out	Good	Low	Through Out	None Detected	NA
East Building	EB-67	Grey floor coating (texture)	Through Out	Good	Low	Through Out	None Detected	NA
East Building	EB-68	2x4 Ceiling tile	925	Good	Low	2800 SF	None Detected	NA
East Building	EB-69	Mirror mastic		Good	Low		10% Chrysotile	NA
East Building	EB-70	Mirror mastic	Bathroom mirrors @ 1026,977,980	Good	Low	50 SF	Not Analyzed	NA
East Building	EB-71	Mirror mastic		Good	Low		Not Analyzed	NA
East Building	EB-72	Sink mastic	618	Good	Low	2 Sinks	None Detected	NA
East Building	EB-73	12x12 Beige VFT		Damaged	Low		<1% Chrysotile	NA
East Building	EB-73	Mastic		Damaged	Low		5% Chrysotile	NA
East Building	EB-74	12x12 Beige VFT	964	Damaged	Low	200 SF	<1% Chrysotile	NA
East Building	EB-74	Mastic	964	Damaged	Low	200 SF	Not Analyzed	NA
East Building	EB-75	12x12 Beige VFT		Damaged	Low		<1% Chrysotile	NA
East Building	EB-75	Mastic		Damaged	Low		Not Analyzed	NA
East Building	EB-76	Drywall W/ Joint Compound	965	Good	Low	300 SF	None Detected	NA
East Building	EB-77	Crack filler	965 exterior	Good	Low	30 LF	None Detected	NA
East Building	EB-A1	Roof tar		Good	Low		3% Chrysotile	NA
East Building	EB-A1	Roof felt	Nauth lavver es et	Good	Low	20400 SF	None Detected	NA
East Building	EB-A2	Roof tar	North lower roof	Good	Low		Not Analyzed	NA
East Building	EB-A2	Roof felt	Good Low		None Detected	NA		

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
East Building	EB-A3	Roof tar		Good	Low		Not Analyzed	NA
East Building	EB-A3	Roof felt		Good	Low		None Detected	NA
East Building	EB-M1	Roof Mastic		Good	Low		7% Chrysotile	NA
East Building	EB-M2	Roof Mastic	Penetrations, patch, HVAC, sleepers	Good	Low	500 SF	Not Analyzed	NA
East Building	EB-M3	Roof Mastic		Good	Low		Not Analyzed	NA
East Building	EB-B1	Roofing felt roll		Good	Low		None Detected	NA
East Building	EB-B2	Roofing felt roll	Main roof, North	Good	Low	100,000 SF	None Detected	NA
East Building	EB-B3	Roofing felt roll		Good	Low		None Detected	NA
East Building	EB-T1	HVAC Tape	Rooftop HVAC ducting	Good	Low	200 SF	None Detected	NA
East Building	EB-C1	Roof tar		Good	Low		3% Chrysotile	NA
East Building	EB-C1	Roof felt		Good	Low		None Detected	NA
East Building	EB-C2	Roof tar		Good	Low		Not Analyzed	NA
East Building	EB-C2	Roof felt		Good	Low		None Detected	NA
East Building	EB-C3	Roof tar	Main roof, South	Good	Low	100,575 SF	Not Analyzed	NA
East Building	EB-C3	Roof felt	iviain root, south	Good	Low		None Detected	NA
East Building	EB-C4	Roof tar		Good	Low		Not Analyzed	NA
East Building	EB-C4	Roof felt		Good	Low		None Detected	NA
East Building	EB-C5	Roof tar		Good	Low		Not Analyzed	NA
East Building	EB-C5	Roof felt		Good	Low	v	None Detected	NA
East Building	EB-TSI	Pipe insulation	Rooftop	Good	Low	400 LF	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-001	12x12 VFT, black		Good	Low		None Detected	NA
West Building	WB-001	Floor tile masic		Good	Low		None Detected	NA
West Building	WB-002	12x12 VFT, black	160 W hallway	Good	Low	1000 SF	None Detected	NA
West Building	WB-002	Floor tile masic	160 W hallway	Good	Low	1000 SF	None Detected	NA
West Building	WB-003	12x12 VFT, black		Good	Low		None Detected	NA
West Building	WB-003	Floor tile masic		Good	Low		None Detected	NA
West Building	WB-004	Floor tile masic	154-156	Good	Low	500 SF	2% Chrysotile	NA
West Building	WB-005	Floor tile masic	154-156	Good	Low	500 SF	Not Analyzed	NA
West Building	WB-006	Linoleum, beige	161	Good	Low	60 SF	20% Chrysotile	NA
West Building	WB-007	12x12 VFT, white	160	Good	Low	E0.6E	None Detected	NA
West Building	WB-007	Floor tile masic	160	Good	Low	50 SF	None Detected	NA
West Building	WB-008	Linoloum gray		Damag	Me		None Detected	NΔ
west building	VV D-UU8	Linoleum, gray	131 ed	ed	d.		None Detected	NA
West Building	WB-008	Linoleum mastic		Good	Low		None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-009	Baseboard, black	101 127	Good	Low	1000 LE	None Detected	NA
West Building	WB-009	Baseboard glue	101-127	Good	Low	1000 LF	None Detected	NA
West Building	WB-010	2x4 Ceiling tile	101-127	Good	Low	3000 SF	None Detected	NA
West Building	WB-011	Drywall		Good	Low		None Detected	NA
West Building	WB-011	Joint compound		Good	Low		None Detected	NA
West Building	WB-012	Drywall	Original 112/142	Good	Low	Through Out	None Detected	NA
West Building	WB-012	Joint compound	Original 112/142	Good	Low	Till Ough Out	None Detected	NA
West Building	WB-013	Drywall		Good	Low		None Detected	NA
West Building	WB-013	Joint compound		Good	Low		None Detected	NA
West Building	WB-014	Baseboard, blue	131	Good	Low	800 LF	None Detected	NA
West Building	WB-014	Baseboard glue	131	Good	Low	800 LF	None Detected	NA
West Building	WB-015	1x1 ceiling tile	140/141	Good	Low	600 SF	None Detected	NA
West Building	WB-016	Floor tile masic		Good	Low		2% Chrysotile	NA
West Building	WB-017	Floor tile masic	128-130, 132-138 Under carpet	Good	Low	3200 SF	Not Analyzed	NA
West Building	WB-018	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-019	12x12 VFT, white	140	Good	Low	50 SF	None Detected	NA
West Building	WB-019	Floor tile masic	140,141,142,144,	Good	Low	1000 SF	5% Chrysotile	NA
West Building	WB-020	12x12 VFT, dk. Blue	132	Good	Low	800 SF	None Detected	NA
West Building	WB-020	Floor tile masic	132	Good	Low	800 31	None Detected	NA
West Building	WB-021	12x12 VFT, tan		Good	Low		<1% Chrysotile	NA
West Building	WB-021	Floor tile masic		Good	Low		5% Chrysotile	NA
West Building	WB-022	12x12 VFT, tan	132	Good	Low	400 SF	<1% Chrysotile	NA
West Building	WB-022	Floor tile masic	132	Good	Low	400 31	Not Analyzed	NA
West Building	WB-023	12x12 VFT, tan		Good	Low		<1% Chrysotile	NA
West Building	WB-023	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-024	Leveling compound	145	Good	Low	200 SF	None Detected	NA
West Building	WB-025	12x12 VFT, white	Hall at 145/149	Good	Low	300 SF	<1% Chrysotile	NA
West Building	WB-025	Floor tile masic	11all at 143/143	Good	Low	300 31	5% Chrysotile	NA
West Building	WB-026	Baseboard, gray	128-145	Good	Low	1000 LF	None Detected	NA
West Building	WB-026	Baseboard glue	120 143	Good	Low	1000 Li	None Detected	NA
West Building	WB-027	12x12 VFT, blue w/white		Good	Low		None Detected	NA
West Building	WB-027	Floor tile masic		Good	Low		None Detected	NA
West Building	WB-028	12x12 VFT, blue w/white	208/209/218/220/221	Good	Low	v 5000 SF	None Detected	NA
West Building	WB-028	Floor tile masic	208/209/218/220/221	Good	Low	3000 31	None Detected	NA
West Building	WB-029	12x12 VFT, blue w/white		Good Low	N	None Detected	NA	
West Building	WB-029	Floor tile masic		Good	Low		None Detected	NA
West Building	WB-030	12x12 VFT, gray	207-209	Good	Low	400 SF	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-030	Floor tile masic		Good	Low		2% Chrysotile	NA
West Building	WB-030	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-031	12x12 VFT, gray		Good	Low		None Detected	NA
West Building	WB-031	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-031	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-032	12x12 VFT, gray		Good	Low		None Detected	NA
West Building	WB-032	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-032	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-033	Floor coating, beige	216	Good	Low	240 SF	None Detected	NA
West Building	WB-034	Baseboard, 6" brown	200 anation	Good	Low	1200 LE	None Detected	NA
West Building	WB-034	Baseboard glue	200 section	Good	Low	1200 LF	None Detected	NA
West Building	WB-035	Floor tile masic		Good	Low		2% Chrysotile	NA
West Building	WB-036	Floor tile masic	200-203, under carpet	Good	Low	400 SF	Not Analyzed	NA
West Building	WB-037	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-038	12x12 VFT, beige		Good	Low		<1% Chrysotile	NA
West Building	WB-038	Floor tile masic		Good	Low		3% Chrysotile	NA
West Building	WB-039	12x12 VFT, beige	235/236/240/241 under carnet	Good	Low	800 SF	<1% Chrysotile	NA
West Building	WB-039	Floor tile masic		Good	Low	No.	Not Analyzed	NA
West Building	WB-040	12x12 VFT, beige		Good	Low		<1% Chrysotile	NA
West Building	WB-040	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-041	Lab counter tops, black		Good	Low	12 Country	5% Chrysotile	NA
West Building	WB-042	Lab counter tops, black	211, 214, 217	Good	Low	12 Counter Tops	Not Analyzed	NA
West Building	WB-043	Lab counter tops, black		Good	Low	Tops	Not Analyzed	NA
West Building	WB-044	12x12 VFT, blue w/white		Good	Low		<1% Chrysotile	NA
West Building	WB-044	Floor tile masic		Good	Low		3% Chrysotile	NA
West Building	WB-044	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-045	12x12 VFT, blue w/white		Good	Low		<1% Chrysotile	NA
West Building	WB-045	Floor tile masic	M206	Good	Low	600 SF	Not Analyzed	NA
West Building	WB-045	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-046	12x12 VFT, blue w/white		Good	Low		<1% Chrysotile	NA
West Building	WB-046	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-046	VFT (bottom)		Good	Low		None Detected	NA
West Building	WB-047	12x12 VFT,tan		Good	Low		<1% Chrysotile	NA
West Building	WB-047	Floor tile masic		Good	Low		3% Chrysotile	NA
West Building	WB-048	12x12 VFT,tan	M205	Good	Low	300 SF	<1% Chrysotile	NA
West Building	WB-048	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-049	12x12 VFT,tan		Good	Low		<1% Chrysotile	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-049	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-050	Leveling compound	237	Good	Low	200 SF	None Detected	NA
West Building	WB-051	12x12 VFT, dk. Blue	224 /244 /246	Good	Low	1000 CF	None Detected	NA
West Building	WB-051	Floor tile masic	231/244/246	Good	Low	1000 SF	None Detected	NA
West Building	WB-052	12x12 VFT, dk. Blue		Good	Low		None Detected	NA
West Building	WB-052	Floor tile glue		Good	Low		None Detected	NA
West Building	WB-053	12x12 VFT, dk. Blue	Massining 205/216	Good	Low	1200 CE	None Detected	NA
West Building	WB-053	Floor tile glue	Mezzinine, 305/316	Good	Low	1300 SF	None Detected	NA
West Building	WB-054	12x12 VFT, dk. Blue		Good	Low		None Detected	NA
West Building	WB-054	Floor tile glue		Good	Low		None Detected	NA
West Building	WB-055	12x12 VFT, sea blue		Good	Low		None Detected	NA
West Building	WB-055	Floor tile masic	207 244 /245 /4 (2002)	Good	Low	10 000 05	None Detected	NA
West Building	WB-056	12x12 VFT, sea blue	307-311/315 (1 layer)	Good	Low	10,000 SF	None Detected	NA
West Building	WB-056	Floor tile masic		Good	Low		None Detected	NA
West Building	WB-057	12x12 VFT, sea blue		Good	Low		None Detected	NA
West Building	WB-057	Floor tile masic		Good	Low		2% Chrysotile	NA
West Building	WB-058	12x12 VFT, sea blue	201 204 (2 lavers)	Good	d Low	CE00 CE	None Detected	NA
West Building	WB-058	Floor tile masic	301-304 (2 lavers)	Good	Low	6500 SF	Not Analyzed	NA
West Building	WB-059	12x12 VFT, sea blue		Good	Low		None Detected	NA
West Building	WB-059	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-060	Floor coating	320	Good	Low	680 SF	None Detected	NA
West Building	WB-061	12x12 VFT, gray		Good	Low		None Detected	NA
West Building	WB-061	Floor tile masic		Good	Low		<1% Chrysotile	<0.1
West Building	WB-062	12x12 VFT, gray	242/242/222 5	Good	Low	1060 SF	None Detected	NA
West Building	WB-062	Floor tile masic	312/313/322.5	Good	Low	1000 3F	<1% Chrysotile	0.1
West Building	WB-063	12x12 VFT, gray		Good	Low		None Detected	NA
West Building	WB-063	Floor tile masic		Good	Low		<1% Chrysotile	<0.1
West Building	WB-064	12x12 VFT, black	214 (han laver)	Good	Low	500 SF	None Detected	NA
West Building	WB-064	Floor tile masic	314 (top layer)	Good	Low	500 SF	None Detected	NA
West Building	WB-065	12x12 VFT, dk. Blue	400 Mozzinino	Good	Low	000 55	None Detected	NA
West Building	WB-065	Floor tile masic	409 Mezzinine	Good	Low	900 SF	None Detected	NA
West Building	WB-066	12x12 VFT, dk. Gray		Good	Low		None Detected	NA
West Building	WB-066	Floor tile glue		Good	Low	 ⊦	None Detected	NA
West Building	WB-067	12x12 VFT, dk. Gray	408/409 Goo	Good	Low	940.55	None Detected	NA
West Building	WB-067	Floor tile glue		Good	Low	840 SF	None Detected	NA
West Building	WB-068	12x12 VFT, dk. Gray		Good	Low		None Detected	NA
West Building	WB-068	Floor tile glue		Good	Low		None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-069	12x12 VFT, tan		Good	Low		<1% Chrysotile	NA
West Building	WB-069	Floor tile masic		Good	Low		3% Chrysotile	NA
West Building	WB-070	12x12 VFT, tan	FOF F22	Good	Low	15000 CE	<1% Chrysotile	NA
West Building	WB-070	Floor tile masic	505-532	Good	Low	15000 SF	Not Analyzed	NA
West Building	WB-071	12x12 VFT, tan		Good	Low		<1% Chrysotile	NA
West Building	WB-071	Floor tile masic		Good	Low		Not Analyzed	NA
West Building	WB-072	Baseboard, black	507 522	Good	Low	800 LF	None Detected	NA
West Building	WB-072	Baseboard glue	507-532	Good	Low	800 LF	None Detected	NA
West Building	WB-073	Floor coating, textured	505	Good	Low	6500 SF	None Detected	NA
West Building	WB-074	Roofing		Good	Low		3% Chrysotile	NA
West Building	WB-075	Roofing	N roof	Good	Low	25000 SF	Not Analyzed	NA
West Building	WB-076	Roofing		Good	Low		Not Analyzed	NA
West Building	WB-077	Roofing		Good	Low		3% Chrysotile	NA
West Building	WB-078	Roofing	Mid roof, north	Good	Low	26000 SF	Not Analyzed	NA
West Building	WB-079	Roofing		Good	Low		Not Analyzed	NA
West Building	WB-080	Roofing (PVC)		Good	Low		None Detected	NA
West Building	WB-081	Roofing		Good	Low	25000 SF	None Detected	NA
West Building	WB-082	Roofing		Good	Low		None Detected	NA
West Building	WB-083	Roofing		Good	Low	1	None Detected	NA
West Building	WB-084	Roofing		Good	Low		None Detected	NA
West Building	WB-085	Roofing	S roof/high bay	Good	Low	60000 SF	None Detected	NA
West Building	WB-086	Roofing		Good	Low		None Detected	NA
West Building	WB-087	Roofing		Good	Low		None Detected	NA
West Building	WB-088	Roofing mastic		Good	Low		7% Chrysotile	NA
West Building	WB-089	Roofing mastic	Penetrations, patch, HVAC, sleepers	Good	Low	680 SF	Not Analyzed	NA
West Building	WB-090	Roofing mastic		Good	Low		Not Analyzed	NA
West Building	WB-091	HVAC tape	Rooftop ducting	Good	Low	24 SF	None Detected	NA
West Building	WB-092	Mirror mastic		Good	Low		10% Chrysotile	NA
West Building	WB-093	Mirror mastic	RRs; 513/514	Good	Low	50 SF	Not Analyzed	NA
West Building	WB-093A	Mirror mastic		Good	Low		Not Analyzed	NA
West Building	WB-094	Drywall		Good	Low		None Detected	NA
West Building	WB-094	Joint compound	150/225	Good	Low	W Through Out	None Detected	NA
West Building	WB-095	Drywall	150/225	Good	Low		None Detected	NA
West Building	WB-095	Joint compound		Good	Low		None Detected	NA
West Building	WB-096	Wall panel	245-251	Good	Low	50 SF	None Detected	NA
West Building	WB-097	Window putty	M outorion	Good	Low	3 (8 pane),	<1% Chrysotile	0.3
West Building	WB-098	Window putty	W exterior	Good	Low	12 (1 pane)	<1% Chrysotile	0.4

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
West Building	WB-099	Window putty		Good	Low		<1% Chrysotile	0.2
West Building	WB-100	Sink mastic	Kitchen sinks	Good	Low	3 Sinks	None Detected	NA
West Building	WB-101	12x12 VFT (bottom)	317	Good	Low	1200 SF	None Detected	NA
West Building	WB-101	Floor tile masic	31/	Good	Low	1200 SF	3% Chrysotile	NA
West Building	WB-102	Pipe wrap, white	405	Good	Low	10 SF	None Detected	NA
West Building	WB-103	2x2 ceiling tile, textured	150	Good	Low	2000 SF	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Warehouse	WH001	Drywall		Good	Low		None Detected	NA
Warehouse	WH001	Joint compound		Good	Low		None Detected	NA
Warehouse	WH002	Drywall	S interior wall	Good	Low	240 SF	None Detected	NA
Warehouse	WH002	Joint compound	Sinterior wall	Good	Low	240 SF	None Detected	NA
Warehouse	WH003	Drywall		Good	Low		None Detected	NA
Warehouse	WH003	Joint compound		Good	Low		None Detected	NA
Warehouse	WH004	Culking, gray	E interior wall	Good	Low	2 SF	<1% Chrysotile	<0.1
Warehouse	WH005	HVAC tape, white	Exterior	Good	Low	30 SF	None Detected	NA
Warehouse	WH006	Roofing		Good	Low		None Detected	NA
Warehouse	WH007	Roofing		Good	Low	5600 SF	None Detected	NA
Warehouse	WH008	Roofing	Roof	Good	Low		None Detected	NA
Warehouse	WH009	Roofing mastic	KOOI	Good	Low		5% Chrysotile	NA
Warehouse	WH010	Roofing mastic		Good	Low	w 20 SF	Not Analyzed	NA
Warehouse	WH011	Roofing mastic		Good	Low		Not Analyzed	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Lab	LB001	Roofing		Good	Low		None Detected	NA
Lab	LB002	Roofing	Roof	Good	Low	Amount 1500 SF 60 SF 32 SF 1200 SF 1200 SF 30 SF 400 SF 2 doors 2 counters 40 pieces Throughout 2 cabinets 1 hood	None Detected	NA
Lab	LB003	Roofing		Good	Low		None Detected	NA
Lab	LB004	Roofing mastic	D 6	Good	Low		4% Chrysotile	NA
Lab	LB005	Roofing mastic	Rooftop penetrations, HVAC ducts, patch,	Good	Low	60 SF	Not Analyzed	NA
Lab	LB006	Roofing mastic	sleepers	Good	Low		Not Analyzed	NA
Lab	LB007	HCAC tape	Rooftop ducts	Good	Low	32 SF	None Detected	NA
Lab	LB008	12x12 VFT, blue		Good	Low		None Detected	NA
Lab	LB008	Floor tile mastic		Good	Low		2% Chrysotile	NA
Lab	LB009	12x12 VFT, blue	laharian flaans	Good	Low	1200.55	None Detected	NA
Lab	LB009	Floor tile mastic	Interior floors	Good	Low	1200 SF	Not Analyzed	NA
Lab	LB010	12x12 VFT, blue		Good	Low		None Detected	NA
Lab	LB010	Floor tile mastic		Good	Low		Not Analyzed	NA
Lab	LB011	2x4 ceiling tile	Ceilings	Good	Low	1200 SF	None Detected	NA
Lab	LB012	Concrete	Trough liner	Good	Low	30 SF	None Detected	NA
Lab	LB013	Wall coating	Lab walls	Good	Low	400 SF	None Detected	NA
Lab	LB014	Door insulation	Shaker room	Good	Low	2 doors	None Detected	NA
Lab	LB015	Counter top, black	Counter and hood	Good	Low	2 counters	None Detected	NA
Lab	LB016	Refractory brick	Loose	Good	Low	40 pieces	None Detected	NA
Lab	LB017	Panel coating	Interior corrugated panels	Good	Low	Throughout	None Detected	NA
Lab	Assumed Positive	Transite	Flame cabinets	Good	Low	2 cabinets	None Detected	NA
Lab	Assumed Positive	Transite	Hood	Good	Low	1 hood	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Guard Shack	GS-01	Drywall	Interior walls	Good	Low	Throughout	None Detected	NA
Guard Shack	GS-01	Joint compound		Good	Low		None Detected	NA
Guard Shack	GS-02	Drywall		Good	Low		None Detected	NA
Guard Shack	GS-02	Joint compound		Good	Low		None Detected	NA
Guard Shack	GS-03	Drywall		Good	Low		None Detected	NA
Guard Shack	GS-03	Joint compound		Good	Low		None Detected	NA
Guard Shack	GS-04	12x12 VFT blue	Interior floors	Good	Low	60 SF	None Detected	NA
Guard Shack	GS-04	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-05	12x12 VFT blue		Good	Low		None Detected	NA
Guard Shack	GS-05	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-06	12x12 VFT blue		Good	Low		None Detected	NA
Guard Shack	GS-06	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-07	12x12 VFT, lt. blue	Interior floors	Good	Low	125 SF	None Detected	NA
Guard Shack	GS-07	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-08	12x12 VFT, lt. blue		Good	Low		None Detected	NA
Guard Shack	GS-08	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-09	12x12 VFT, lt. blue		Good	Low		None Detected	NA
Guard Shack	GS-09	Floor tile mastic		Good	Low		None Detected	NA
Guard Shack	GS-10	Stucco, white	Exterior walls	Good	Low	1600 SF	None Detected	NA
Guard Shack	GS-11	Stucco, white		Good	Low		None Detected	NA
Guard Shack	GS-12	Stucco, white		Good	Low		None Detected	NA
Guard Shack	GS-13	Roofing	Roof	Good	Low	700 SF	None Detected	NA
Guard Shack	GS-14	Roofing		Good	Low		None Detected	NA
Guard Shack	GS-15	Roofing		Good	Low		None Detected	NA
Guard Shack	GS-16	Roofing mastic	Rooftop penetrations, patch	Good	Low	20 SF	5% Chrysotile	NA
Guard Shack	GS-17	Roofing mastic		Good	Low		Not Analyzed	NA
Guard Shack	GS-18	Roofing mastic		Good	Low		Not Analyzed	NA
Guard Shack	GS-19	HVAC mastic	Ducting	Good	Low	15 SF	5% Chrysotile	NA
Guard Shack	GS-20	Baseboard, black	Interior Walls	Good	Low	80 SF	None Detected	NA
Guard Shack	GS-20	Baseboard glue		Good	Low		None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Credit Union	CU-001	Drywall	Interior walls	Good	Low	Throughout	None Detected	NA
Credit Union	CU-001	Joint compound		Good	Low		None Detected	NA
Credit Union	CU-002	Drywall		Good	Low		None Detected	NA
Credit Union	CU-002	Joint compound		Good	Low		None Detected	NA
Credit Union	CU-003	Drywall		Good	Low		None Detected	NA
Credit Union	CU-003	Joint compound		Good	Low		None Detected	NA
Credit Union	CU-004	12x12 VFT, blue	Main room, kitchen, RRs, mech. room	Good	Low	920 SF	None Detected	NA
Credit Union	CU-004	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-005	12x12 VFT, blue		Good	Low		None Detected	NA
Credit Union	CU-005	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-006	12x12 VFT, blue		Good	Low		None Detected	NA
Credit Union	CU-006	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-007	12x12 VFT, black	Conf. room, side room	Good	Low	- 200 SF	None Detected	NA
Credit Union	CU-007	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-008	12x12 VFT, black		Good	Low		None Detected	NA
Credit Union	CU-008	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-009	12x12 VFT, black		Good	Low		None Detected	NA
Credit Union	CU-009	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-010	12x12 VFT, white	kitchen, RRs	Good	Low	60 SF	None Detected	NA
Credit Union	CU-010	Floor tile mastic		Good	Low		None Detected	NA
Credit Union	CU-011	Baseboard, black	Malla Mararrati and	Good	Low	180 LF	None Detected	NA
Credit Union	CU-011	Baseboard glue	Walls throughout	Good	Low		None Detected	NA
Credit Union	CU-012	2x4 ceiling tile	Ceilings throughout	Good	Low	3500 SF	None Detected	NA
Credit Union	CU-013	Stucco, white	Exterior walls	Good	Low	2400 SF	None Detected	NA
Credit Union	CU-014	Stucco, white		Good	Low		None Detected	NA
Credit Union	CU-015	Stucco, white		Good	Low		None Detected	NA
Credit Union	CU-016	VFT, white	Under carpet	Good	Low	2450 SF	<1% Chrysotile	NA
Credit Union	CU-016	Floor tile mastic		Good	Low		2% Chrysotile	NA
Credit Union	CU-016	Carpet glue		Good	Low		None Detected	NA
Credit Union	CU-017	VFT, white		Good	Low		<1% Chrysotile	NA
Credit Union	CU-017	Floor tile mastic		Good	Low		Not Analyzed	NA
Credit Union	CU-018	VFT, white		Good	Low		<1% Chrysotile	NA
Credit Union	CU-018	Floor tile mastic		Good	Low		Not Analyzed	NA
Credit Union	CU-019	Roofing	Roof	Good	Low	3750 SF	4% Chrysotile	NA
Credit Union	CU-020	Roofing		Good	Low		Not Analyzed	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Credit Union	CU-021	Roofing		Good	Low		Not Analyzed	NA
Credit Union	CU-022	Roofing mastic	Rooftop penetrations, patch	Good	Low	16 SF	5% Chrysotile	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
NE Trailer	NET-01	Drywall		Good	Low		None Detected	NA
NE Trailer	NET-01	Joint compound		Good	Low		None Detected	NA
NE Trailer	NET-02	Drywall	Rooms 1132/1134		Low	2800 SF	None Detected	NA
NE Trailer	NET-02	Joint compound			Low	2800 SF	None Detected	NA
NE Trailer	NET-03	Drywall		Good	Low		None Detected	NA
NE Trailer	NET-03	Joint compound		Good	Low		None Detected	NA
NE Trailer	NET-04	2x4 Ceiling tile	Ceilings	Good	Low	800 SF	None Detected	NA
NE Trailer	NET-05	1x4 Ceiling tile	Ceilings	Good	Low	800 SF	None Detected	NA
NE Trailer	NET-06	Carpet mastic	Interior floors	Good	Low	800 SF	None Detected	NA
NE Trailer	NET-07	Baseboard mastic	Walls	Good	Low	120 LF	None Detected	NA
NE Trailer	NET-08	HVAC mastic	Exterior ducts	Good	Low	20 SF	None Detected	NA

Building	Sample #	Material	Location	Cond.	DP	Amount	Result	Point Count
Haz Storage Shed	HS001	12x12 VFT, blue	Small guard shack Dar	Damagad	Med.	18 SF	None Detected	NA
Haz Storage Shed	HS001	Floor tile mastic		Damaged		18 SF	None Detected	NA

Complete XRF Summaries

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	1	600	C	Wall	Drywall	Beige	Intact	0	
East Building	2	602	C	Wall	Concrete	White	Intact	0	
East Building	3	602	A	Wall	Drywall	White	Intact	0	
East Building	4	602	A	Door	Wood	Gray	Intact	0.01	
East Building	5	603	D	Wall	Concrete	White	Intact	0	
East Building	6	604	С	Wall	Drywall	White	Intact	0	
East Building	7	605	A	Wall	Drywall	White	Intact	0	
East Building	8	606	В	Wall	Drywall	White	Intact	0	
East Building	9	610	С	Wall	Concrete	White	Intact	0.05	
East Building	10	611	D	Wall	Drywall	White	Intact	0.01	
East Building	11	612	С	Wall	Concrete	White	Intact	0.04	
East Building	12	613	В	Wall	Drywall	White	Intact	0	
East Building	13	614	A	Wall	Drywall	Beige	Intact	0.02	
East Building	14	614	D	Wall	Drywall	Blue	Intact	0	
East Building	15	614	A	Door	Wood	Beige	Intact	0.01	
East Building	16	614	A	Doorframe	Wood	Brown	Intact	0.05	
East Building	17	614	С	Doorframe	Metal	Brown	Intact	0	
East Building	18	614	D	Column	Metal	White	Intact	0.02	
East Building	19	615	A	Wall	Drywall	White	Intact	0	
East Building	20	615	С	Cabinet	Wood	Stain	Intact	0	
East Building	21	617	В	Wall	Drywall	Brown	Intact	0	
East Building	22	618	С	Wall	Drywall	White	Intact	0	
East Building	23	618	A	Column	Metle	White	Intact	0	
East Building	24	619	D	Wall	Drywall	White	Intact	0	
East Building	25	620	A	Wall	Drywall	Beige	Intact	0	
East Building	26	620	В	Wall	drywall	Blue	Intact	0	
East Building	27	620	С	Door	Wood	Brown	Intact	0.01	
East Building	28	620	С	Doorframe	Metal	Black	Intact	0	
East Building	29	620	С	Column	Metal	White	Intact	0.02	
East Building	30	620	С	Wall	Concrete	Beige	Intact	0	
East Building	31	621	С	Column	Concrete	White	Intact	0.04	
East Building	32	622	В	Wall	Concrete	White	Intact	0.03	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	33	623	D	Wall	Drywall	White	Intact	0	
East Building	34	624	С	Wall	Drywall	White	Intact	0	
East Building	35	625	В	Wall	Drywall	White	Intact	0	
East Building	36	626	D	Wall	Drywall	White	Intact	0	
East Building	37	627	С	Door	Wood	Gray	Intact	0.02	
East Building	38	628	A	Wall	Concrete	Red	Intact	0.03	
East Building	39	628	В	Wall	Concrete	Blue	Intact	0	
East Building	40	628	С	Wall	Drywall	Beige	Intact	0	
East Building	41	629	A	Wall	Concrete	White	Intact	0.01	
East Building	42	630	В	Wall	Drywall	White	Intact	0.02	
East Building	43	631	A	Column	Metal	White	Intact	0.04	
East Building	44	632	A	Window frame	Metal	White	Intact	0.02	
East Building	45	633	С	Wall	Drywall	White	Intact	0.01	
East Building	46	634	A	Wall	Drywall	White	Intact	0	
East Building	47	635	A	Window frame	Metal	White	Intact	0.03	
East Building	48	636	С	Door	Wood	Gray	Intact	0.01	
East Building	49	636	С	Doorframe	Wood	Gray	Intact	0	
East Building	50	637	A	Column	Metal	White	Intact	0.01	
East Building	51	637	В	Beam	Metal	Red	Intact	0.01	
East Building	52	638	A	Wall	Concrete	White	Intact	0.01	
East Building	53	638	A	Column	Metal	White	Intact	0	
East Building	54	638	C	Crown Molding	Wood	White	Intact	0.01	
East Building	55	639	A	Window Frame	Metal	White	Intact	0.03	
East Building	56	640	A	Door	Metal	White	Intact	0.05	
East Building	57	640	A	Doorframe	Metal	White	Intact	0.05	
East Building	58	641	D	Wall	Drywall	White	Intact	0	
East Building	59	642	C	Door	Wood	Gray	Intact	0	
East Building	60	642	С	Doorframe	Metal	White	Intact	0.04	
East Building	61	643	В	Wall	Drywall	Beige	Intact	0.01	
East Building	62	644	D	Wall	Metal	white	Intact	0	
East Building	63	645	С	Door	Wood	Gray	Intact	0.01	
East Building	64	645	С	Doorframe	Wood	Grat	Intact	0	
East Building	65	645	A	Window frame	Metal	White	Intact	0.04	
East Building	66	646	A	Wall	Drywall	White	Intact	0	
East Building	67	647	В	Wall	drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	68	647	D	Crown Molding	Wood	White	Intact	0.01	
East Building	69	648	A	Wall	Concrete	White	Intact	0.05	
East Building	70	648	В	Window Frame	Metal	White	Intact	0.03	
East Building	71	650	A	Wall	Drywall	Beige	Intact	0	
East Building	72	650	С	Wal	Drywall	Beige	Intact	0	
East Building	73	650	D	Window frame	Metal	White	Intact	0.01	
East Building	74	651	D	Wall	Drywall	white	Intact	0	
East Building	75	652	В	Door	Wood	Gray	Intact	0	
East Building	76	653	С	Wall	Drywall	White	Intact	0	
East Building	77	701	D	Roll-up door	Metal	Gray	Intact	0.04	
East Building	78	701	D	Roll-up frame	Metal	Gray	Intact	0.05	
East Building	79	702	D	Door	Wood	Gray	Intact	0.02	
East Building	80	702	A	Wall	Drywall	White	Intact	0.01	
East Building	81	703	С	Column	Metal	White	Intact	0.04	
East Building	82	703	D	Column	Metal	Blue	Intact	0.04	
East Building	83	703	В	Wall	Drywall	White	Intact	0	
East Building	84	704	D	Wall	Concrete	White	Intact	0.03	
East Building	85	704	D	Sprinkler	Metal	Red	Intact	0.04	
East Building	86	705	A	Wall	Drywall	White	Intact	0	
East Building	87	708/749/748	D	Wall	Concrete	White	Intact	0.02	
East Building	88	708/749/748	D	Roll-up frame	Metal	Gray	Intact	0.04	
East Building	89	708/749/748	A	Safety stripe	Concrete	Yellow	Fair	0	
East Building	90	708/749/748	В	Door	Wood	Gray	Intact	0	
East Building	91	708/749/748	В	Column	metal	Gray	Intact	1.6	15 each
East Building	92	708/749/748	В	Window frame	Metal	Gray	Intact	0.01	
East Building	93	708/749/748	В	Wall	Concrete	White	Intact	0.02	
East Building	94	734/735	A	Wall	Metal	White	Intact	0	
East Building	95	734/735	C	Door	Metal	Gray	Intact	0.01	
East Building	96	734/735	C	Doorframe	Metal	Gray	Intact	0	
East Building	97	712	В	Column	Metal	White	Intact	0.05	
East Building	98	712	В	Door	Wood	White	Intact	0	
East Building	99	712	В	Doorframe	Metal	White	Intact	0.05	
East Building	100	712	C	Wall	Drywall	Blue	Intact	0	
East Building	101	713	A	Wall	Concrete	White	Intact	0.02	
East Building	102	713	С	Wall	Drywall	Blue	Intact	0.01	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	103	713	A	Column	Concrete	White	Intact	0.04	
East Building	104	713	A	Roll-up door	Metal	Gray	Intact	0	
East Building	105	713	A	Roll-up frame	Metal	Gray	Intact	0.04	
East Building	106	713	С	Door	Wood	Black	Intact	0	
East Building	107	713	С	Doorframe	Wood	White	Intact	0	
East Building	108	716	С	Wall	Drywall	White	Intact	0	
East Building	109	716	В	Wall	Wood	White	Intact	0	
East Building	110	716	В	Window frame	Metal	White	Intact	0	
East Building	111	718	A	Window frame	Wood	Beige	Intact	0.01	
East Building	112	718	D	Wall	Drywall	Beige	Intact	0	
East Building	113	720	В	Wall	Drywall	White	Intact	0	
East Building	114	720	D	Door	Wood	Gray	Intact	0	
East Building	115	721	A	Wall	Drywall	White	Intact	0	
East Building	116	721	В	Wall	Concrete	White	Intact	0	
East Building	117	721	В	Column	Metal	Gray	Intact	0.05	
East Building	118	721	A	Door	Wood	White	Intact	0	
East Building	119	721	A	Doorframe	Wood	White	Intact	0.01	
East Building	120	723	D	Wall	Drywall	White	Intact	0	
East Building	121	724	A	Wall	Drywall	White	Intact	0	
East Building	122	725	В	Column	Metal	White	Intact	0.05	
East Building	123	725	В	Wall	Concrete	White	Intact	0.05	
East Building	124	729	A	Wall	Plaster	White	Intact	0.02	
East Building	125	729	D	Toilet	Porcelain	White	Intact	0	
East Building	126	729	C	Wall	Concrete	Blue	Intact	0	
East Building	127	729	C	Wall	Concrete	White	Intact	0.01	
East Building	128	729	A	Floor	Concrete	Gray	Poor	0.02	
East Building	129	729	A	Ceiling	Plaster	White	Poor	0	
East Building	130	729	C	Locker	Metal	Blue	Intact	0.01	
East Building	131	731	A	Wall	Drywall	White	Intact	0	
East Building	132	731	В	Dbl door	Metal	Gray	Intact	0.01	
East Building	133	731	В	Dbl doorframe	Metal	Gray	Intact	0	
East Building	134	731	D	Beam	Metal	White	Intact	0.02	
East Building	135	738	A	Wall	Plaster	White	Intact	0.01	
East Building	136	738	A	Beam	Metal	Gray	Intact	0.03	
East Building	137	738	A	Roll-up door	Metal	Gray	Intact	0.01	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	138	738	A	Roll-up frame	Metal	Gray	Intact	0.04	_
East Building	139	738	A	Door	Metal	Gray	Intact	0.01	
East Building	140	738	A	Doorframe	Metal	Gray	Intact	0.05	
East Building	141	738	В	Pipe	Metal	Tan	Poor	0	
East Building	142	738	C	Rail	Metal	Yellow	Intact	0.02	
East Building	143	738	D	Vent	Metal	White	Intact	0.02	
East Building	144	738	В	Wall	Drywall	White	Intact	0.01	
East Building	145	738	D	Duct	Metal	White	Intact	0	
East Building	146	738	D	Pipe	Metal	White	Intact	0	
East Building	147	741	A	Wall	Drywall	White	Intact	0.01	
East Building	148	741	C	Door	Metal	White	Intact	0	
East Building	149	741	C	Doorframe	Metal	White	Intact	0.02	
East Building	150	743	A	Safety stripe	Concrete	Yellow	Intact	0.01	
East Building	151	743	D	Column	Metal	White	Intact	1.5	6 each
East Building	152	743	D	Beam	Metal	White	Intact	0.05	
East Building	153	743	D	Sliding door	Metal	Gray	Intact	5.4	1 each
East Building	154	743	С	Roll-up door	Metal	Gray	Intact	0.04	
East Building	155	743	С	Roll-up frame	Metal	Gray	Intact	0.01	
East Building	156	743	В	Column	Metal	Red	Intact	0.04	
East Building	157	743	В	Beam	Metal	Red	Intact	0.01	
East Building	158	752	D	Wall	Drywall	White	Intact	0	
East Building	159	753	A	Wall	Drywall	White	Intact	0	
East Building	160	754	C	Wall	Drywall	White	Intact	0	
East Building	161	754	В	Ladder	Wood	White	Intact	0	
East Building	162	755	A	Wall	Drywall	White	Intact	0	
East Building	163	755	В	Wall	Drywall	White	Intact	0	
East Building	164	756	В	Wall	Wood	Beige	Intact	1	324 SF
East Building	165	756	С	Wall	Wood	Beige	Intact	1.2	same
East Building	166	756	D	Wall	Drywall	Beige	Intact	0	
East Building	167	756	A	Wall	Wood	Beige	Intact	0	
East Building	168	756	В	Door	Wood	Black	Intact	0	
East Building	169	756	В	Doorframe	Metal	Beige	Intact	0	
East Building	170	756	С	Window frame	Metal	Beige	Intact	0	
East Building	171	757	A	Wall	Drywall	White	Intact	0	
East Building	172	757	В	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	173	758	В	Door	Wood	White	Intact	0.05	-
East Building	174	758	В	Doorframe	Metal	Gray	Intact	0	
East Building	175	763	A	Floor drain	Porcelain	White	Intact	0	
East Building	176	763	С	Wall	Drywall	White	Intact	0	
East Building	177	764	В	Wall	Drywall	White	Intact	0	
East Building	178	765	A	Door	Wood	Gray	Intact	0	
East Building	179	765	A	Wall	Drywall	White	Intact	0	
East Building	180	765	В	Doorframe	Wood	Gray	Intact	0	
East Building	181	766	D	Safety stripe	Concrete	Yellow	Gair	0.01	
East Building	182	766	D	Corner guard	Metal	Black	Intact	0	
East Building	183	766	C	Crane	Metal	Blue	Intact	0	
East Building	184	766	В	Wall	Drywall	White	Intact	0	
East Building	185	766	В	Door	Wood	Gray	Intact	0	
East Building	186	766	D	Column	Metal	Gray	Intact	1.4	3 each
East Building	187	767	C	Wall	Drywall	White	Intact	0	
East Building	188	767	D	Door	Wood	Gray	Intact	0	
East Building	189	768	A	Wall	Drywall	White	Intact	0	
East Building	190	768	В	Safety stripe	Concrete	Yellow	Intact	0.01	
East Building	191	771	A	Wall	Drywall	White	Intact	0	
East Building	192	771	В	Door	Wood	Gray	Intact	0.01	
East Building	193	772	D	Wall	Drywall	White	Intact	0	
East Building	194	772	D	Door	Wood	Gray	Intact	0	
East Building	195	773	C	Column	Metal	White	Intact	0.05	
East Building	196	774	D	aaaa0.01	Drywall	White	Intact	0	
East Building	197	780	A	Wall	Drywall	White	Intact	0	
East Building	198	780	C	Wall	Drywall	Gray	Intact	0.01	
East Building	199	780	A	Door	Wood	Gray	Intact	0	
East Building	200	780	A	Doorframe	Metal	Gray	Intact	0	
East Building	201	780	N/A	Floor	Concrete	Black	Intact	0	
East Building	202	781	В	Tile wall	Ceramic	White	Intact	0.01	
East Building	203	781	N/A	Ceiling	Drywall	White	Intact	0	
East Building	204	781	N/A	Floor	Concrete	Gray	Intact	0.01	
East Building	205	781	C	Urinal	Porcelain	White	Intact	0	
East Building	206	782	D	Tile	Ceramic	White	Intact	0.01	
East Building	207	782	N/A	Ceiling	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	208	782	N/A	Floor	Concrete	Gray	Intact	0.02	
East Building	209	782	A	Toile	Porcelain	White	Intact	0.01	
East Building	210	783	A	Tile wall	Ceramic	White	Intact	0.01	
East Building	211	783	С	Toilet	Porcelain	White	Intact	0.01	
East Building	212	783	A	Sink	Porcelain	White	Intact	0	
East Building	213	783	N/A	Tile floor	Ceramic	Gray	Intact	0	
East Building	214	783	N/A	Ceiling	Drywall	White	Intact	0.01	
East Building	215	785	A	Tile wall	Ceramic	White	Intact	0.01	
East Building	216	785	N/A	Tile floor	Ceramic	Gray	Intact	0	
East Building	217	785	A	Sink	Porcelain	White	Intact	0.01	
East Building	218	785	A	Urinal	Porcelain	White	Intact	0	
East Building	219	785	С	Toilet	Porcelain	White	Intact	0.01	
East Building	220	785	В	Wall	Drywall	White	Intact	0	
East Building	221	786	A	Sink	porcelain	White	Intact	0.04	
East Building	222	786	A	Toilet	Porcelain	White	Intact	0	
East Building	223	786	N/A	Ceiling	Drywall	White	Intact	0	
East Building	224	786	N/A	Floor	Concrete	Gray	Intact	0	
East Building	225	787	A	Wall	Drywall	Green	Intact	0	
East Building	226	788	В	Wall	Drywall	Green	Intact	0	
East Building	227	789	С	Wall	Drywall	White	Intact	0	
East Building	228	801	A	Cabinet	Wood	White	Intact	0	
East Building	229	801	A	Wall	Concrete	White	Intact	0	
East Building	230	801	A	Door	Wood	Gray	Intact	0.03	
East Building	231	801	A	Doorframe	Metal	Gray	Intact	0.05	
East Building	231	913/914	A	Column	Concrrete	White	Intact	0	
East Building	232	913/914	В	Doorframe	Metal	Gray	Intact	0.01	
East Building	232	802	A	Wall	Drywall	White	Intact	0	
East Building	233	913/914	A	Window frame	Metal	White	Intact	0.02	
East Building	233	803	С	Door	Wood	Gray	Intact	0	
East Building	234	804	С	Wall	Drywall	White	Intact	0	
East Building	234	913/914	С	Column	Metal	White	Intact	0	
East Building	235	805	A	Wall	Drywall	White	Intact	0	
East Building	236	805	В	Door	Wood	Gray	Intact	0.01	
East Building	237	805	D	Column	Metal	White	Intact	0.04	
East Building	238	805	С	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	239	806	В	Wall	drywall	White	Intact	0	_
East Building	240	807	A	Wall	Drywall	White	Intact	0	
East Building	241	808	В	Column	Metal	White	Intact	0	
East Building	242	810	A	Wall	Drywall	White	Intact	0	
East Building	243	810	A	Baseboard	Concrete	Black	Intact	0	
East Building	244	810	N/A	Safety stripe	Concrete	yellow	Poor	0	
East Building	245	810	N/A	Handrail	Metal	Yelow	Intact	0.4	
East Building	246	810	В	Wall	Concrete	White	Intact	0	
East Building	247	810	В	Roll-up door	Metal	Gray	Intact	0	
East Building	248	810	BB	Roll-up frame	Metal	Gray	Intact	0	
East Building	249	810	N/A	Column	Metal	Gray	Fair	0.28	5
East Building	250	810	N/A	Column	Metal	yellow	Intact	0.27	1
East Building	251	810	D	Dbl door	Metal	Gray	Intact	0	
East Building	252	810	D	Dbl doorframe	Metal	Gray	Intact	0	
East Building	253	810	D	Window frame	Metal	Black	Intact	0	
East Building	254	810	N/A	Floor	Concrete	Gray	Intact	0	
East Building	255	817	A	Wall	Concrete	Beige	Intact	0	
East Building	256	817	A	Wall	Concrete	White	Intact	0	
East Building	257	817	N/A	Floor	Concrete	White	Yellow	0	
East Building	258	817	В	Dbl door	Wood	Black	Intact	0	
East Building	259	817	В	Dbl drooframe	Wood	Black	Intact	0	
East Building	260	819	A	Wall	Concrete	White	Intact	0	
East Building	261	819	В	Wall	Metal	White	Intact	0	
East Building	262	819	D	Door	Metal	Gray	Intact	0	
East Building	263	819	D	Doorframe	Metal	Gray	Intact	0	
East Building	264	819	N/A	Beam	Metal	Green	Intact	0.01	
East Building	265	820	A	Wall	Drywall	White	Intact	0	
East Building	266	820	A	Door	Metal	Gray	Intact	0	
East Building	267	820	A	Doorframe	Metal	Gray	Intact	0	
East Building	268	820	N/A	Cabinet	Metal	Gray	Intact	0	
East Building	269	820	В	Hood	Meatl	Gray	Intact	0	
East Building	270	827	A	Wall	Drywall	White	Intact	0	
East Building	271	827	В	Dbl door	Metal	Gray	Intact	0	
East Building	272	827	В	Dbl doorframe	Metal	Gray	Intact	0	
East Building	273	827	С	Column	Metal	White	Intact	0.05	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	274	827	D	Colun	Metal	Gray	Intact	0	
East Building	275	828	A	Wall	Drywall	White	Intact	0	
East Building	276	828	A		Metal	Gray	Intact	0	
East Building	277	830/831	A	Wall	Drywall	White	Intact	0	
East Building	278	830/831	В	Wall	Concrete	White	Intact	0	
East Building	279	830/831	В	Pipe	Metal	White	Intact	0.01	
East Building	280	830/831	C	Door	Metal	Gray	Fair	0	
East Building	281	830/831	C	Doorframe	Metal	Gray	Fair	0	
East Building	282	832	C	Wall	Drywall	White	Intact	0	
East Building	283	832	D	Wall	Concrete	White	Intact	0	
East Building	284	832	C	Beam	Metal	White	Intact	1.3	
East Building	285	832	C	Curb	Concrete	Yellow	Poor	0	
East Building	286	832	С	Floor	Concrete	Gray	Poor	0	
East Building	287	836	С	Wall	Drywall	White	Intact	0	
East Building	288	837	С	Column	Metal	White	Intact	0.05	
East Building	289	837	A	Wall	Drywall	White	Intact	0	
East Building	290	838	С	Wall	Drywall	White	Intact	0	
East Building	291	838	D	Doorframe	Wood	Gray	Intact	0	
East Building	292	840	В	Wall	Drywall	White	Intact	0	
East Building	293	841	D	Wall	Drywall	White	Intact	0	
East Building	294	842	A	Wall	Concrete	White	Intact	0.01	
East Building	295	842	D	Door	Metal	Gray	Intact	0	
East Building	296	842	D	Doorframe	Metal	White	Intact	0.02	
East Building	297	843	В	Wall	Drywall	White	Intact	0	
East Building	298	843	D	Door	Wood	Gray	Intact	0	
East Building	299	845	D	Column	Metal	Yellow	Intact	0.04	
East Building	300	846	В	Wall	Drywall	White	Intact	0	
East Building	301	849	A	Wall	Drywall	White	Intact	0	
East Building	302	849	C	Wall	Drywall	White	Intact	0	
East Building	303	849	В	Door	Wood	Gray	Intact	0.01	
East Building	304	850	D	Wall	Drywall	White	Intact	0	
East Building	305	851	С	Wall	Drywall	White	Intact	0	
East Building	306	853	A	Wall	Drywall	White	Intact	0	
East Building	307	853	В	Wall	Concrete	White	Intact	0.03	
East Building	308	853	В	Column	Metal	White	Intact	0.02	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	309	854	A	Wall	Concrete	White	Intact	0.01	
East Building	310	854	В	Wall	Concrete	White	Intact	0.01	
East Building	311	854	С	Wall	Drywall	White	Intact	0	
East Building	312	854	В	Door	Metal	Gray	Intact	0	
East Building	313	854	В	Doorframe	Metal	Gray	Intact	0.02	
East Building	314	854	A	Sprinkler	Metal	Red	Intact	0.01	
East Building	315	855	D	Window frame	Metal	White	Intact	0	
East Building	316	855	С	Wall	Drywall	White	Intact	0	
East Building	317	856	В	Wal	Drywal	White	Intact	0	
East Building	318	857	D	Wall	Drywall	White	Intact	0	
East Building	319	901	A	Wall	Concrete	White	Intact	0.03	
East Building	320	901	C	Column	Metal	Gray	Intact	0.05	
East Building	321	903	С	Wall	Drywall	White	Intact	0	
East Building	322	903	A	Door	Wood	Gray	Intact	0.01	
East Building	323	905	С	Wall	Drywall	White	Intact	0	
East Building	324	906	D	Wall	Drywall	White	Intact	0	
East Building	325	910	D	Wall	Drywall	White	Intact	0.01	
East Building	326	911	A	Column	Concrete	White	Intact	0.04	
East Building	327	912	A	Wall	Drywall	White	Intact	0	
East Building	328	912	В	Door	Wood	Gray	Intact	0.02	
East Building	329	915	C	Wall	Concrete	White	Intact	0.04	
East Building	330	915	C	Door	Wood	Gray	Intact	0	
East Building	331	916	A	Wall	Concrete	White	Intact	0.02	
East Building	332	916	C	Column	Metal	Red	Intact	0.01	
East Building	333	916	В	Pump (Seimens)	Metal	Blue	Fair	0	
East Building	334	916	C	Cooling tower feed	Metal	Gray	Intact	0	
East Building	335	916	В	Storage tanks	Metal	Gray	Intact	0	
East Building	336	916	A	Floor	Concrete	Red	Intact	0	
East Building	337	934	C	Wall	Drywall	White	Intact	0	
East Building	338	938	В	Wall	Drywall	White	Intact	0	
East Building	339	939	В	Window frame	Metal	White	Intact	0	
East Building	340	939	C	Wall	Drywall	White	Intact	0	
East Building	341	940	В	Wall	Drywall	White	Intact	0	
East Building	342	941	A	Wall	Drywall	White	Intact	0	
East Building	343	942	В	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	344	942	D	Wall	Wood	White	Intact	0.01	
East Building	345	942	С	Column	Metal	Yellow	Intact	3.2	1 each
East Building	346	942	A	Column	Metal	White	Intact	0.05	
East Building	347	942	D	Door	Wood	Gray	Intact	0	
East Building	348	942	A	Riser	Wood	Gray	Intact	0	
East Building	349	942	A	Stringer	Wood	Gray	Intact	0	
East Building	350	942	A	Handrail	Wood	Gray	Intact	0	
East Building	351	943	В	Wall	Drywall	White	Intact	0	
East Building	352	943	В	Wall	Drywall	Gray	Intact	0	
East Building	353	943	N/A	Safety stripe	Concrete	Yellow	Intact	0	
East Building	354	945	A	Wall	Drywall	White	Intact	0	
East Building	355	945	C	Wall	Concrete	White	Intact	0	
East Building	356	945	A	Window frame	Metal	Beige	Intact	0.01	
East Building	357	945	C	Vert. beam	Metal	White	Intact	0.01	
East Building	358	946	A	Wall	Drywall	White	Intact	0	
East Building	359	946	A	Window frame	Metal	Beige	Intact	0.01	
East Building	360	946	A	Dbl door	Metal	Gray	Intact	0	
East Building	361	946	A	Dbl doorframe	Metal	Gray	Intact	0	
East Building	362	946	A	Door	Metal	Gray	Intact	0	
East Building	363	946	A	Doorframe	Metal	Gray	Intact	0.03	
East Building	364	947	A	Wall	Drywall	White	Intact	0	
East Building	365	947	C	Door	Metal	Blue	Intact	0	
East Building	366	947	C	Doorframe	Metal	Blue	Intact	0.01	
East Building	367	947	D	Dbl door	Metal	Blue	Intact	0	
East Building	368	947	D	Dbl doorframe	Metal	Gray	Intact	0	
East Building	369	947	C	Window	Metal	White	Poor	2.8	4 windows
East Building	370	951	A	Wall	Drywall	White	Intact	0	
East Building	371	951	В	Dbl door	Metal	Gray	Intact	0	
East Building	372	951	C	Doorframe	Metal	Gray	Intact	0	
East Building	373	951	N/A	Floor	Concrete	Gray	Intact	0	
East Building	374	952	A	Wall	Drywall	White	Intact	0	
East Building	375	952	N/A	Column	Metal	Gray	Intact	0.02	
East Building	376	952	N/A	Floor	Concrete	Gray	Intact	0	
East Building	377	952	В	Roll-up door	Metal	Gray	Intact	0	
East Building	378	952	В	Roll-up frame	Metal	Black	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	379	954	A	Wall	Drywall	Tan	Intact	0	
East Building	380	954	В	Wall	Drywall	Tan	Intact	0	
East Building	381	954	С	Wall	Drywall	Tan	Intact	0	
East Building	382	954	D	Wall	Drywall	Tan	Intact	0	
East Building	383	954	A	Door	Wood	Stain	Intact	0	
East Building	384	954	С	Door	Wood	Stain	Intact	0	
East Building	385	954	С	Door	Metal	Gray	Intact	0	
East Building	386	954	С	Doorframe	Metal	Gray	Intact	0	
East Building	387	954 RR	A	Tile wall	Ceramic	Gray	Intact	0.04	
East Building	388	954 RR	N/A	Tile floor	Ceramic	Brown	Intact	0.01	
East Building	389	954 RR	D	Sink	Porcelain	White	Intact	0.01	
East Building	390	954 RR	D	Toilet	Porcelain	White	Intact	0	
East Building	391	954 RR	В	Wall	Drywall	White	Intact	0	
East Building	392	964	A	Wall	Drywall	White	Intact	0	
East Building	393	964	В	Wall	Metal	White	Intact	0.02	
East Building	394	964	A	Door	Metal	Gray	Intact	0	
East Building	395	964	A	Doorframe	Metal	Gray	Intact	0	
East Building	396	964	A	Corner guard	Metal	Yellow	Fair	1.6	2
East Building	397	964	С	Structural stell	Metal	Red	Poor	0.05	
East Building	398	965	В	Structural stell	Metal	Red	Fair	0	
East Building	399	965	С	W	Drywall	White	Intact	0	
East Building	400	968	A	Wall	Concrete	White	Intact	0	
East Building	401	968	В	Window	Metal	White	Intact	0.02	
East Building	402	968	N/A	Safety stripe	Concrete	Yellow	Intact	0	
East Building	403	968	С	Wall	Concrete	Gray	Intact	0	
East Building	404	968	N/A	Column	Metal	White	Fair	0.03	
East Building	405	968	N/A	Column	Metal	Red	Fair	1.1	2
East Building	406	968	D	Dooorframe	Wood	Gray	Intact	0.01	
East Building	407	971	A	Wall	Concrete	White	Intact	0	
East Building	408	971	В	Wall	Drywall	White	Intact	0	
East Building	409	971	A	Dbl door	Wood	Gray	Intact	0	
East Building	410	971	A	Dbl doorframe	Metal	White	Intact	0	
East Building	411	971	В	Door	Wood	Gray	Intact	0	
East Building	412	971	В	Doorframe	Metal	Gray	Intact	0	
East Building	413	974	A	Column	Metal	White	Intact	0.02	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	414	974	A	Wall	Drywall	White	Intact	0	
East Building	415	975	В	Wall	Drywall	White	Intact	0	
East Building	416	975	A	Wall	Drywall	White	Intact	0	
East Building	417	977	D	Tile wall	Ceramic	White	Intact	0.03	
East Building	418	977	D	Tile floor	Ceramic	Gray	Intact	0	
East Building	419	977	В	Baseboard, tile	Ceramic	Gray	Intact	0.01	
East Building	420	977	С	Sink	Porcelain	White	Intact	0	
East Building	421	977	A	Toilet	Porcelain	White	Intact	0	
East Building	422	977	С	Urinal	Porcelain	White	Intact	0.01	
East Building	423	980	A	Tile wall	Ceramic	White	Intact	0.04	
East Building	424	980	В	Toilet	Porcelain	White	Intact	0.01	
East Building	425	980	С	Sink	Porcelain	White	Intact	0	
East Building	426	980	D	Tile floor	Ceramic	Gray	Intact	0	
East Building	427	980	С	Ceilng	Drywall	White	Intact	0	
East Building	428	980	D	Baseboard, tile	Ceramic	Gray	Intact	0.01	
East Building	429	981	D	Door	Wood	Gray	Intact	0	
East Building	430	981	D	Doorframe	Wood	Gray	Intact	0	
East Building	431	981	A	Column	Metal	White	Intact	0	
East Building	432	981	C	Window frame	Metal	White	Intact	0	
East Building	433	983	A	Wall	Concrete	Blue	Intact	0	
East Building	434	983	В	Wall	Wood	Beige	Intact	0	
East Building	435	983	В	Wall	Drywall	Beige	Intact	0	
East Building	436	1003	A	Wall	Concrete	White	Intact	0	
East Building	437	1003	A	Wall guard	Metal	yellow	Intact	1.1	1
East Building	438	1003	N/A	Safety stripe	Concrete	yellow	Intact	0	
East Building	439	1003	N/A	Column	Metal	Yellow	Intact	0.05	
East Building	440	1003	N/A	Floor	Concrete	Gray	Intact	0	
East Building	441	1003	В	Door	Metal	Gray	Intact	0	
East Building	442	1003	В	Doorframe	Metal	Gray	Intact	0.01	
East Building	443	1003	C	Handrail	Metal	Gray	Intact	0	
East Building	444	1003	С	Window frame	Metal	Black	Intact	0	
East Building	445	1003	C	Dbl door	Metal	Gray	Intact	0	
East Building	446	1003	C	Dbl doorframe	Metal	Gray	Intact	0	
East Building	447	1004	A	Wall	Concrete	White	Intact	0	
East Building	448	1004	В	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	449	1004	A	Wall guard	Metal	Yellow	Intact	1.1	1
East Building	450	1004	В	Window frame	Metal	Black	Intact	0	
East Building	451	1004	N/A	Floor	Concrete	Gray	Intact	0	
East Building	452	1004	С	Door	Metal	Gray	Intact	0	
East Building	453	1004	С	Doorframe	Metal	Gray	Intact	0.01	
East Building	454	1004	N/A	Safety stripe	Concrete	Yellow	Intact	0	
East Building	455	1004	С	Wall	Drywall	Gray	Intact	0	
East Building	456	1004	С	Dbl door	Metal	Gray	Intact	0	
East Building	457	1004	С	Dbl doorframe	Metal	Gray	Intact	0	
East Building	458	1008	A	Wall	Concrete	White	Intact	0	
East Building	459	1008	В	Wall	Drywall	White	Intact	0	
East Building	460	1008	A	Doorframe	Metal	Gray	Fair	0.01	
East Building	461	1008	В	Window frame	Metal	Black	Intact	0	
East Building	462	1008	С	Dbl door	Metal	Gray	Intact	0.01	
East Building	463	1008	С	Dbl doorframe	Metal	Gray	Intact	0.05	
East Building	464	1008	С	Wall guard	Metal	Black	Intact	0	
East Building	465	1008	N/A	Safety stripe	Concrete	Yellow	Intact	0	
East Building	466	1008	N/A	Floor	Concrete	Gray	Intact	0	
East Building	467	1008	D	Rool-up door	Metal	Gray	Intact	0	
East Building	468	1008	D	Roll-up frame	Metal	Gray	Intact	0.01	
East Building	469	1008	C	Dbl door	Metal	Gray	Intact	0	
East Building	470	1008	С	Dbl doorframe	Metal	Gray	Intact	0.01	
East Building	471	1012	A	Wall	Drywall	White	Intact	0	
East Building	472	1012	N/A	Floor	Concrete	Gray	Intact	0	
East Building	473	1015	В	Entry frame	Wood	White	Intact	0	
East Building	474	1015	A	Wall	Drywall	White	Intact	0	
East Building	475	1015	C	Wall	Concrete	White	Intact	0	
East Building	476	1015	C	Rool-up door	Metal	Gray	Intact	0	
East Building	477	1015	C	Roll-up frame	Metal	Gray	Intact	0	
East Building	478	1015	C	Door	Metal	Gray	Intact	0	
East Building	479	1015	C	Doorframe	Metal	Gray	Intact	0.01	
East Building	480	1022	A	Wall	Drywall	White	Intact	0	
East Building	481	1022	C	Wall	Concrete	White	Intact	0	
East Building	482	1022	В	Door	Metal	Gray	Intact	0	
East Building	483	1022	В	Doorframe	Metal	Gray	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	484	1022	N/A	Floor	Concrete	Gray	Intact	0	_
East Building	485	1022	С	Door	Metal	Gray	Intact	0	
East Building	486	1022	С	Doorframe	Metal	Gray	Intact	0.01	
East Building	487	1022	С	Roll-up door	Metal	Black	Intact	0	
East Building	488	1022	С	Roll-up frame	Metal	Black	Intact	0.01	
East Building	489	1022	A	Shelf	Wood	Gray	Intact	0	
East Building	490	1023	A	Wall	Drywall	White	Intact	0	
East Building	491	1023	N/A	Floor	Concrete	Gray	Intact	0	
East Building	492	1023	N/A	Safety stripe	Concrete	Yellow	Intact	0	
East Building	493	1025	A	Wall	Drywall	Tan	Intact	0	
East Building	494	1025	В	Window frame	Metal	Black	Intact	0	
East Building	495	1025	В	Doorframe	Metal	Black	Intact	0	
East Building	496	1025	В	Door	Metal	Tan	Intact	0	
East Building	497	1025	С	Door	Metal	Tan	Intact	0	
East Building	498	1025	С	Doorframe	Metal	Black	Intact	0	
East Building	499	1026	A	Wall	Drywall	Tan	Intact	0	
East Building	500	1026	С	Wall	Concrete	Tan	Intact	0	
East Building	501	1026	С	Pole	Metal	Tan	Intact	0	
East Building	502	1039	В	Tank 1	Metal	White	Intact	0	
East Building	503	1039	В	Tank 2	Metal	White	Intact	0.01	
East Building	504	1039	В	Tank 2 legs	Metal	White	Intact	0	
East Building	505	1101	N/A	Structural stell	Metal	Red	Intact	0	
East Building	506	1027 RR	A	Tile wall	Ceramic	White	Intact	4.3	T/O
East Building	507	1027 RR	N/A	Tile floor	Ceramic	Gray	Intact	0.01	
East Building	508	1027 RR	D	Sink	Porcelain	White	Intact	0.03	
East Building	509	1027 RR	В	Toilet	Porcelain	White	Intact	0	
East Building	510	1027 RR	В	Stall	Metal	Gray	Intact	0	
East Building	511	1031 JC	A	Wall	Drywall	White	Intact	0	
East Building	512	1031 JC	D	Door	Metal	Brown	Intact	0.01	
East Building	513	1031 JC	D	Doorframe	Metal	Brown	Intact	0.01	
East Building	514	1031 JC	С	J. sink	Porcelain	White	Intact	19.5	1
East Building	515	1032 RR	A	Tile wall	Ceramic	White	Intact	4.8	T/O
East Building	516	1032 RR	A	Stall	Metal	Gray	Intact	0	
East Building	517	1032 RR	A	Toilet	Porcelain	White	Intact	0	
East Building	518	1032 RR	A	Sink	Porcelain	White	Intact	0.01	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	519	1032 RR	N/A	Tile floor	Ceramic	White	Intact	0	
East Building	520	1032 RR	N/A	Ceiling	Drywall	White	Intact	0	
East Building	521	1033 2nd flr.	Α	Wall	Drywall	White	Intact	0	
East Building	522	1033 2nd flr.	A	Doorframe	Metal	Black	Intact	0	
East Building	523	1033 2nd flr.	A	Ladder	Metal	Brown	Intact	1.7	1
East Building	524	Exterior	В	Wall	Metal	White	Intact	0	
East Building	525	Exterior	В	Speed bump	Concrete	Yellow	Poor	1.6	200 SF
East Building	526	Exterior	В	Handrail	Metal	Gray	Fair	0	
East Building	527	Exterior	В	Wall	Concrete	White	Intact	0	
East Building	528	Exterior	В	Sofet	Stucco	White	Intact	0	
East Building	529	Exterior	В	Bollards	Metal	Red	Fair	1.2	4 each
East Building	530	Exterior	В	Fire hydrant	Metal	Red	Intact	1	2 each
East Building	531	Exterior	В	Downspout	Metal	White	Intact	0	
East Building	532	Exterior	В	Downspout	Metal	White	Intact	0.05	
East Building	533	Exterior	В	Wall	Concrete	White	Fair	0	
East Building	534	Exterior	В	Window frame	Metal	White	Intact	0.04	
East Building	535	Exterior	С	Handrail	Metal	Yellow	Intact	0	
East Building	536	Exterior	С	Bollards	Metal	Yellow	Fair	0	
East Building	537	Exterior	С	Wall	Concrete	White	Intact	0.01	
East Building	538	Exterior	С	Tred	Concrete	Yellow	Poor	0	
East Building	539	Exterior	С	Door	Metal	Gray	Intact	0.02	
East Building	540	Exterior	С	Doorframe	Metal	Gray	Intact	0.01	
East Building	541	Exterior	С	Window frame	Metal	White	Intact	0.02	
East Building	542	Exterior	С	Awning	Metal	White	Intact	0	
East Building	543	Exterior	С	Fire hydrant	Metal	Red	Fair	17.3	1
East Building	544	Exterior	С	Fire sprinkler	Metal	Red	Fair	3	1
East Building	545	Exterior	В	Dust collector	Metal	Blue	Intact	0.02	
East Building	546	Exterior	В	Dust coll. Legs	Metal	Blue	Intact	0	
East Building	547	Exterior	С	Bollard	Metal	Red	Fair	0	
East Building	548	Exterior	С	Fire valve	Metal	Red	Fair	0.02	
East Building	549	Exterior	С	Railing	Metal	Gray	Fair	0	
East Building	550	Exterior	С	Wall	Metal	White	Intact	0	
East Building	551	Exterior	С	Tread	Metal	Yellow	Poor	0.02	
East Building	552	Exterior	С	Handrail	Metal	Yellow	Fgair	0.02	
East Building	553	Exterior	D	Safety stripe	Concrete	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	554	Exterior	D	Bollard	Metal	Yellow	Intact	3.8	20 each
East Building	555	Exterior	D	Wall	Concrete	White	Intact	0	
East Building	556	Exterior	D	Safety stripe	Concrete	Yellow	Intact	0	
East Building	557	Exterior	D	Door	Metal	Gray	Intact	0	
East Building	558	Exterior	D	Doorframe	Metal	Gray	Intact	0	
East Building	559	Exterior	D	Downspout	Metal	Gray	Intact	3	
East Building	560	Exterior	D	Column	Metal	Gray	Intact	0	
East Building	561	Exterior	D	Beam	Metal	Gray	Intact	0	
East Building	562	Exterior	D	Ceiling	Metal	White	Intact	0	
East Building	563	Exterior	D	Column	Metal	Red	Fair	0	
East Building	564	Exterior	D	Beam	Metal	Gray	Intact	0	
East Building	565	Exterior	D	Column	Metal	Red	Intact	0	
East Building	566	Exterior	D	Beam	Metal	Red	Intact	0	
East Building	567	Exterior	D	Column	Metal	White	Fair	0.02	
East Building	568	Exterior	D	Wall	Metal	White	Intact	0	
East Building	569	Exterior	D	Conduit bracket	Metal	White	Intact	0	
East Building	570	Exterior	D	Fire riser (pipe)	Metal	Red/white	Intact	2.4	
East Building	571	Exterior	D	Bollard	Metal	Red	Intact	0.02	
East Building	572	Exterior	D	Fire hydrant	Metal	Red	Intact	4	3
East Building	573	Exterior	D	Wall	Concrete	White	Intact	0	
East Building	574	Exterior	D	Joists/awning	Wood	White	Intact	0	
East Building	575	Exterior	D	Fire riser bracket	Metal	Red	Intact	0	
East Building	576	Exterior	D	Louvers	Metal	White	Intact	0.01	
East Building	577	Exterior	A	Wall	Concrete	White	Intact	0	
East Building	578	Exterior	A	Roll-up door	Metal	Gray	Intact	0.02	
East Building	579	Exterior	A	Roll-up doorframe	Metal	Gray	Intact	0	
East Building	580	Exterior	A	Guard rail	Metal	Yellow	Intact	5.1	3 each
East Building	581	Exterior	D	NE tank	Metal	Gray	Intact	0	
East Building	582	Exterior	D	NE tank	Metal	Gray	Intact	0.01	
East Building	583	Exterior	D	NE awning	Metal	Gray	Intact	0.01	
East Building	584	Exterior	A	Wall	Concrete	White	Intact	0.01	
East Building	585	Exterior	A	Soffit	Stucco	White	Intact	0.02	
East Building	586	Exterior	A	Trim	Rock	Gray	Intact	0	
East Building	587	Exterior	A	Gate	Metal	Gray	Intact	0.01	
East Building	588	Exterior	A	Wall	Concrete	White	Intact	0.05	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
East Building	589	Exterior	A	Window frame	Metal	Gray	Intact	0.03	
East Building	590	Exterior	A	Wall	Stucco	White	Intact	0.02	
East Building	591	Exterior	A	Vehicle gate	Metal	White	Intact	0.04	
East Building	592	Exterior	A	Column	Concrete	Gray	Intact	0	
East Building	593	Exterior	A	Trim	Concrete	Gray	Intact	0	
East Building	594	Exterior	A	Window frame	Metal	Brown	Intact	0.01	
East Building	595	F1110	A	Structural steel	Metal	White	Poor	0.05	
East Building	596	N/A	N/A	Roof joist	Wood	Beige	Intact	0	
East Building	597	N/A	N/A	Beam	Metal	Beige	Intact	0.01	
East Building	598	Exterior	D	Column	Metal	White	Intact	0.01	
East Building	599	Exterior	D	Beam	Wood	White	Intact	0	
East Building	600	Exterior	A	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	1	111	С	Wall	Drywall	White	Intact	0	
West Building	2	110	В	Wall	Drywall	White	Intact	0	
West Building	3	112	D	Door Frame	Wood	Natural	Intact	0	
West Building	4	112	С	Door	Wood	Natural	Intact	0	
West Building	5	113	В	Floor	Ceramic Tile	Grey	Intact	0	
West Building	6	113	A	Baseboard	Ceramic Tile	White	Intact	0.1	
West Building	7	113	С	Wall	Ceramic Tile	White	Intact	0.1	
West Building	8	113	С	Toilet	Porcelain	White	Intact	0.01	
West Building	9	114	D	Wall	Drywall	White	Intact	0	
West Building	10	118	A	Wall	Drywall	White	Intact	0	
West Building	11	118	В	Window Frame	Wood	Natural	Intact	0	
West Building	12	115	С	Wall	Drywall	White	Intact	0	
West Building	13	107	D	Wall	Drywall	White	Intact	0	
West Building	14	107	A	Door	Wood	Natural	Intact	0	
West Building	15	104	A	Door Frame	Wood	Natural	Intact	0	
West Building	16	104	A	Wall	Ceramic Tile	Grey	Intact	0.17	
West Building	17	104	С	Floor	Ceramic Tile	Grey	Intact	0	
West Building	18	104	D	Baseboard	Ceramic Tile	Grey	Intact	0.04	
West Building	19	104	D	Ceiling	Drywall	White	Intact	0	
West Building	20	104	D	Wall	Concrete	Grey	Intact	0	
West Building	21	102	С	Floor	Ceramic Tile	Grey	Intact	0.02	
West Building	22	102	В	Baseboard	Ceramic Tile	Grey	Intact	0.04	
West Building	23	102	A	Wall	Ceramic Tile	Grey	Intact	0.05	
West Building	24	102	D	Toilet	Porcelain	White	Intact	0.01	
West Building	25	119	В	Wall	Drywall	White	Intact	0	
West Building	26	119	С	Window Frame	Wood	Natural	Intact	0	
West Building	27	119	A	Door	Wood	Natural	Intact	0	
West Building	28	119	A	Door Frame	Wood	Natural	Intact	0	
West Building	29	108	D	Wall	Drywall	White	Intact	0	
West Building	30	105	A	Wall	Drywall	White	Intact	0	
West Building	31	103	В	Wall	Drywall	White	Intact	0	
West Building	32	172	В	Wall	Drywall	White	Intact	0	
West Building	33	172	D	Door	Wood	Grey	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	34	172	D	Door Frame	Metal	White	Intact	0	_
West Building	35	100	A	Door Frame	Metal	Black	Intact	0	
West Building	36	100	В	Window Frame	Metal	Black	Intact	0	
West Building	37	100	С	Wall	Drywall	White	Intact	0	
West Building	38	100	С	Floor	Ceramic Tile	Brown	Intact	9.3	1500 SF
West Building	39	173	С	Wall	Wood	White	Intact	0	
West Building	40	173	D	Wall	Drywall	White	Intact	0	
West Building	41	122	A	Wall	Drywall	White	Intact	0	
West Building	42	122	С	Door	Wood	Natural	Intact	0.01	
West Building	43	122	C	Door Frame	Wood	Natural	Intact	0	
West Building	44	127	C	Wall	Drywall	White	Intact	0	
West Building	45	125	В	Wall	Drywall	White	Intact	0.01	
West Building	46	125	D	Cabinet	Wood	Natural	Intact	0	
West Building	47	124	D	Door	Metal	White	Intact	0	
West Building	48	124	D	Door Frame	Metal	White	Intact	0.01	
West Building	49	131	A	Wall	Concrete	White	Intact	0	
West Building	50	121	С	Wall	Drywall	White	Intact	0	
West Building	51	160	A	Wall	Drywall	Blue	Intact	0	
West Building	52	160	В	Wall	Drywall	Green	Intact	0	
West Building	53	160	D	Wall	Drywall	Grey	Intact	0	
West Building	54	160	С	Trim	Drywall	Yellow	Intact	0.01	
West Building	55	170	В	Wall	Drywall	Grey	Intact	0	
West Building	56	169	A	Wall	Drywall	Grey	Intact	0	
West Building	57	168	A	Wall	Concrete	Grey	Intact	0	
West Building	58	168	В	Wall	Drywall	Blue	Intact	0	
West Building	59	165	A	Wall	Concrete	Grey	Intact	0	
West Building	60	161	D	Wall	Drywall	Beige	Intact	0.01	
West Building	61	161	A	Door	Wood	Beige	Intact	0	
West Building	62	161	A	Door Frame	Wood	Beige	Intact	0.05	
West Building	63	159	В	Wall	Ceramic Tile	White	Intact	0.01	
West Building	64	159	С	Wall	Ceramic Tile	Blue	Intact	0.01	
West Building	65	159	A	Urnial	Porcelain	White	Intact	0.01	
West Building	66	159	С	Toilet	Porcelain	White	Intact	0.01	
West Building	67	159	С	Wall	Metal	Blue	Intact	0	
West Building	68	159	С	Door	Metal	Blue	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	69	159	D	Ceiling	Drywall	White	Intact	0.01	
West Building	70	162	В	Wall	Ceramic Tile	White	Intact	0.01	
West Building	71	162	D	Wall	Drywall	White	Intact	0	
West Building	72	162	D	Floor	Ceramic Tile	Grey	Intact	0	
West Building	73	162	A	Toilet	Porcelain	White	Intact	0	
West Building	74	162	A	Baseboard	Ceramic Tile	White	Intact	0	
West Building	75	162	A	Wall	Metal	Blue	Intact	0.01	
West Building	76	162	A	Door	Metal	Blue	Intact	0	
West Building	77	157	A	Wall	Drywall	White	Intact	0	
West Building	78	157	В	Wall	Concrete	White	Intact	0	
West Building	79	157	В	Door Frame	Metal	Grey	Intact	0.01	
West Building	80	157	C	Door Frame	Wood	White	Intact	0.01	
West Building	81	154	C	Wall	Drywall	White	Intact	0	
West Building	82	155	D	Wall	Drywall	White	Intact	0	
West Building	83	155	A	Door	Wood	Grey	Intact	0	
West Building	84	155	A	Door Frame	Metal	Grey	Intact	0	
West Building	85	156	A	Pipe	Metal	White	Intact	0.01	
West Building	86	151/149	В	Wall	Drywall	White	Intact	0	
West Building	87	151/149	A	Column	Drywall	White	Intact	0	
West Building	88	151/149	С	Door	Wood	Natural	Intact	0	
West Building	89	134	A	Wall	Drywall	White	Intact	0	
West Building	90	134	D	Wall	Wood	White	Intact	0.01	
West Building	91	134	D	Door	Wood	Grey	Intact	0	
West Building	92	134	D	Door Frame	Metal	Grey	Intact	0	
West Building	93	132	D	Wall	Concrete	White	Intact	0	
West Building	94	132	В	Wall	Drywall	White	Intact	0.02	
West Building	95	142	A	Wall	Concrete	White	Intact	0.05	
West Building	96	142	С	Wall	Wood	White	Intact	0	
West Building	97	142	D	Wall	Wood	Blue	Intact	0.01	
West Building	98	142	D	Door	Wood	White	Intact	0.01	
West Building	99	142	D	Doorframe	Wood	White	Intact	0	
West Building	100	145-148	В	Wall	Concrete	White	Intact	0.05	
West Building	101	145-148	D	Door	Metal	Gray	Intact	0.03	
West Building	102	145-148	D	Doorframe	Metal	Gray	Intact	0.01	
West Building	103	206/210/266	A	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	104	206/210/266	С	Column	Drywall	Brown	Intact	0.01	
West Building	105	206/210/266	D	Door	Wood	Brown	Intact	0.01	
West Building	106	206/210/266	D	Doorframe	Metal	Brown	Intact	0	
West Building	107	206/210/266	D	Fire sprinkler	Metal	Red	Intact	0.05	
West Building	108	208	A	Wall	Drywall	White	Intact	0	
West Building	109	207	С	Wall	Drywall	White	Intact	0	
West Building	110	207	В	Wall	Drywall	White	Intact	0	
West Building	111	207	В	Door	Wood	Brown	Intact	0	
West Building	112	207	В	Doorframe	Metal	Gray	Intact	0	
West Building	113	216	C	Cabinet	Metal	Blue	Intact	0.01	
West Building	114	216	N/A	Floor	Concrete	Brown	Intact	0	
West Building	115	216	A	Wall	Drywall	White	Intact	0	
West Building	116	217	D	Wall	Concrete	White	Intact	0.05	
West Building	117	217	D	Electric panel	Metal	Blue	Intact	0.03	
West Building	118	213	С	Wall	Drywall	White	Intact	0	
West Building	119	213	С	Door	Wood	Gray	Intact	0.01	
West Building	120	235	D	Wall	Drywall	White	Intact	0.01	
West Building	121	235	A	Wall	Drywall	Brown	Intact	0.01	
West Building	122	256	A	Wall	Drywall	White	Intact	0	
West Building	123	256	В	Wall	Wood	White	Intact	0	
West Building	124	259	В	Wall	Concrete	White	Intact	0	
West Building	125	259	D	Wall	Drywall	White	Intact	0	
West Building	126	260	В	Door	Metal	Gray	Poor	0	
West Building	127	260	В	Doorframe	Matal	Gray	Poor	0	
West Building	128	260	В	Wall	Drywall	White	Intact	0	
West Building	129	260	A	Wall	Drywall	White	Intact	0.01	
West Building	130	229	В	Wall	Drywall	White	Intact	0	
West Building	131	229	D	Wall	Drywall	White	Intact	0	
West Building	132	229	В	Door	Wood	Gray	Intact	0	
West Building	133	250	В	Wall	Concrete	White	Intact	0	
West Building	134	250	D	Wall	Drywall	White	Intact	0	
West Building	135	250	D	Door	Wood	Gray	Intact	0.01	
West Building	136	245	В	Roll-up door	Metal	White	Poor	0.02	
West Building	137	245	С	Wall	Concrete	White	Intact	0	
West Building	138	246	A	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	139	246	D	Wall	Drywall	White	Intact	0	
West Building	140	238	С	Wall	Drywall	White	Intact	0	
West Building	141	238	D	Wall	Drywall	White	Intact	0	
West Building	142	238	В	Door	Wood	Gray	Intact	0	
West Building	143	238	В	Column	Metal	White	Intact	0	
West Building	144	M206	В	Wall	Drywall	White	Intact	0	
West Building	145	M206	D	Wall	Drywall	White	Intact	0	
West Building	146	M206	C	Wall	Drywall	White	Intact	0	
West Building	147	M206	D	Door	Wood	Gray	Intact	0	
West Building	148	M202	A	Wall	Drywall	White	Intact	0	
West Building	149	M202	C	Wall	Drywall	White	Intact	0	
West Building	150	M200	A	Wall	Drywall	White	Intact	0	
West Building	151	M200	C	Door	Wood	Gray	Intact	0	
West Building	152	M200	С	Doorfame	Wood	Gray	Intact	0.01	
West Building	153	227	С	Tile wall	Ceramic	White	Intact	0	
West Building	154	227	С	Tile floor	Ceramic	Gray	Intact	0.01	
West Building	155	227	С	Sink	Porcelain	White	Intact	0.03	
West Building	156	227	D	Toilet	Porcelain	White	Intact	0	
West Building	157	227	D	Stall	Metel	Blue	Intact	0	
West Building	158	227	D	Stall door	Metal	Blue	Intact	0	
West Building	159	226	C	Tile wall	Ceramic	White	Intact	0	
West Building	160	226	С	Tile floor	Ceramic	Gray	Intact	0.01	
West Building	161	226	С	Sink	Porcelain	White	Intact	0.03	
West Building	162	226	D	Toilet	Porcelain	White	Intact	0	
West Building	163	226	D	Urinal	Porcelain	White	Intact	0	
West Building	164	226	В	Stall	Metal	Blue	Intact	0	
West Building	165	226	В	Stall door	Metal	Blue	Intact	0	
West Building	166	220	D	Wall	Concrete	White	Intact	0.01	
West Building	167	220	C	Wall	Drywall	White	Intact	0	
West Building	168	305	D	Window frame	Metal	White	Intact	0	
West Building	169	305	В	Door	Wood	Gray	Intact	0	
West Building	170	305	Wall	Wall	Drywall	White	Intact	0.01	
West Building	171	305	D	Door	Wood	Blue	Intact	0.01	
West Building	172	306	В	Window frame	Meatl	Gray	Intact	0.01	
West Building	173	306	В	Wall	Drywall	Blue	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	174	306	С	Wall	Concrete	White	Intact	0	
West Building	175	306	D	Wall	Concrete	Blue	Intact	0	
West Building	176	304	В	Window frame	Metal	Gray	Intact	0	
West Building	177	304	D	Door	Metal	Gray	Intact	0	
West Building	178	304	D	Doorframe	Metal	Gray	Intact	0.03	
West Building	179	304	A	Wall	Drywall	White	Intact	0	
West Building	180	304	D	Wall	Drywall	White	Intact	0.01	
West Building	181	303	D	Wall	Concrete	White	Intact	0	
West Building	182	302	A	Wall	Drywall	White	Intact	0	
West Building	183	301	A	Wall	Concrete	White	Intact	0.01	
West Building	184	300	В	Window frame	Metal	White	Intact	0	
West Building	185	300	D	Wall	Drywall	White	Intact	0	
West Building	186	323	A	Wall	Drywall	White	Intact	0	
West Building	187	323	D	Column	Metal	White	Intact	0	
West Building	188	320	A	Wall	Drywall	White	Intact	0	
West Building	189	320	С	Door	Wood	Gray	Intact	0	
West Building	190	321	С	Floor	Concrete	Brown	Intact	0.03	
West Building	191	316	A	Wall	Drywall	White	Intact	0	
West Building	192	316	В	Roll-up door	Metal	Gray	Intact	0.03	
West Building	193	316	В	Roll-up frame	Metal	Gray	Intact	0.05	
West Building	194	316	В	Wall	Concrete	White	Intact	0.03	
West Building	195	316	В	Electric panel	Metal	Gray	Intact	0	
West Building	196	316	С	Door	Wood	Gray	Intact	0	
West Building	197	307/309/310/315	A	Wall	Drywall	White	Intact	0.01	
West Building	198	307/309/310/315	В	Wall	Drywall	White	Intact	0	
West Building	199	307/309/310/315	В	Roll-up door	Metal	Gray	Intact	0.05	
West Building	200	307/309/310/315	В	Roll-up frame	Metal	Gray	Intact	0.05	
West Building	201	307/309/310/315	С	Wall	Drywall	White	Intact	0	
West Building	202	307/309/310/315	С	Safety stripe	Concrete	Yellow	Intact	0.01	
West Building	203	307/309/310/315	С	Ladder	Metal	Blue	Intact	0	
West Building	204	307/309/310/315	A	Column	Metal	White	Intact	0.05	
West Building	205	308	С	Wall	Drywall	White	Intact	0.01	
West Building	206	308	D	Door	Wood	Gray	Intact	0.02	
West Building	207	311	С	Door	Wood	Gray	Intact	0	
West Building	208	311	A	Wall	Drywall	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	209	312	В	Wall	Drywall	White	Intact	0	
West Building	210	314	D	Window frame	Metal	White	Intact	0.01	
West Building	211	314	В	Wall	Drywall	White	Intact	0	
West Building	212	408	A	Wall	Drywall	White	Intact	0	
West Building	213	408	С	Column	Metal	White	Intact	0.05	
West Building	214	409	В	Wall	Drywall	White	Intact	0	
West Building	215	409	С	Column	Metal	Yellow	Intact	0.05	
West Building	216	404/406	A	Column	Metal	Yellow	Intact	0.04	
West Building	217	404/406	A	Steel support	Metal	Yellow	Intact	0.05	
West Building	218	404/406	A	Decking	Metal	Gray	Intact	0.18	
West Building	219	404/406	A	Stair tread	Metal	Gray	Intact	0.25	
West Building	220	404/406	A	Stair riser	Metal	Gray	Intact	0	
West Building	221	404/406	A	Handrail	Metal	Gray	Intact	0.27	
West Building	222	404/406	A	Stringer	Metal	Gray	Intact	0.17	
West Building	223	404/406	В	Roll-up door	Metal	Gray	Intact	0.05	
West Building	224	404/406	В	Roll-up frame	Metal	Gray	Intact	0.05	
West Building	225	404/406	С	Wall	Concrete	White	Intact	0	
West Building	226	404/406	C	Column	Metal	Yellow	Fair	1.4	6 each
West Building	227	404/406	C	Column	Metal	Blue	Fair	1.5	4 each
West Building	228	404/406	D	Sprinkler pipe	Metal	Red	Intact	1.2	15 LF
West Building	229	404/406	D	Safety stripe	Concrete	Yellow	Fair	0.01	
West Building	230	404/406	D	Door	Metal	Gray	Intact	0	
West Building	231	404/406	D	Doorframe	Metal	Gray	Intact	0.03	
West Building	232	M405	В	Beam	Metal	White	Intact	0.01	
West Building	233	M405	A	Beam	Wood	White	Intact	0	
West Building	234	M405	A	Ladder	Metal	Red	Intact	0	
West Building	235	M405	A	Door	Wood	Gray	Intact	0	
West Building	236	M408	D	Floor drain	Metal	White	Intact	1.9	1 each
West Building	237	M409	A	Tile wall	Ceramic	White	Intact	6.4	520 SF
West Building	238	M409	A	Sink	Porcelain	White	Intact	0.01	
West Building	239	M409	A	Urinal	Porcelain	White	Intact	0	
West Building	240	M409	A	Toilet	Porcelain	White	Intact	0.01	
West Building	241	M409	В	Tile counter	Ceramic	White	Intact	8.7	15 SF
West Building	242	M409	С	Tile floor	Ceramic	Blue	Intact	0	
West Building	243	M406	D	Tile wall	Ceramic	White	Intact	6.3	520 SF

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	244	M406	D	Tile floor	Ceramic	Blue	Intact	0	
West Building	245	M406	В	Tile counter	Ceramic	White	Intact	6.3	50 SF
West Building	246	M406	В	Sink	Porcelain	White	Intact	0.01	
West Building	247	M406	A	Toilet	Porcelain	White	Intact	0	
West Building	248	M406	A	Stall	Metal	Blue	Intact	0.01	
West Building	249	M406	A	Stall door	Metal	Blue	Intact	0	
West Building	250	509/519	A	Wall	Concrete	White	Intact	0	
West Building	251	509/519	В	Roll-up door	Metal	Gray	Intact	0	
West Building	252	509/519	В	Roll-up frame	Metal	Gray	Intact	0.01	
West Building	253	509/519	В	Column	Metal	Yellow	Intact	5.4	3 each
West Building	254	509/519	C	Door	Metal	Gray	Intact	0.04	
West Building	255	509/519	C	Doorframe	Metal	Gray	Intact	0.05	
West Building	256	509/519	A	Wall	Drywall	White	Intact	0	
West Building	257	508	С	Wall	Drywall	White	Intact	0	
West Building	258	508	D	Wall	Concrete	White	Intact	0	
West Building	259	521	A	Wall	Drywall	White	Intact	0	
West Building	260	521	В	Wall	Drywall	White	Intact	0	
West Building	261	522	A	Wall	Drywall	Brown	Intact	0	
West Building	262	513	A	Wall	Drywall	White	Intact	0	
West Building	263	513	C	Wall	Drywall	White	Intact	0	
West Building	264	513	D	Tile wall	Ceramic	Blue	Intact	0.01	
West Building	265	513	D	Sink	Porcelain	White	Intact	0	
West Building	266	513	В	Toilet	Porcelain	White	Intact	0	
West Building	267	513	В	Urinal	Porcelain	White	Intact	0	
West Building	268	513	A	Tile baseboard	Ceramic	Blue	Intact	0.01	
West Building	269	513	A	Tile floor	Ceramic	Brown	Intact	0	
West Building	270	514	C	Wall	Drywall	White	Intact	0	
West Building	271	514	В	Tile wall	Ceramic	Blue	Intact	0.03	
West Building	272	514	C	Tile baseboard	Ceramic	Blue	Intact	0.01	
West Building	273	514	В	Sink	Porcelain	White	Intact	0.01	
West Building	274	514	D	Toilet	Porcelain	White	Intact	0	
West Building	275	514	D	Stall door	Metal	Blue	Intact	0	
West Building	276	514	D	Stall	Metal	Blue	Intact	0	
West Building	277	514	A	Floor tile	Ceramic	Brown	Intact	0	
West Building	278	F511	A	Wall	Drywall	Brown	Intact	0	-

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	279	F511	С	Wall	Concrete	Brown	Intact	0	
West Building	280	520	C	Wall	Drywall	White	Intact	0	
West Building	281	520	В	Door	Wood	Gray	Intact	0	
West Building	282	525/527	В	Wall	Drywall	White	Intact	0	
West Building	283	525/527	A	Door	Wood	Gray	Intact	0.01	
West Building	284	525/527	D	Wall	Drywall	White	Intact	0	
West Building	285	531	A	Wall	Concrete	Brown	Intact	0	
West Building	286	524	D	Column	Metal	Brown	Intact	5	1 each
West Building	287	523	A	Wall	Drywall	Brown	Intact	0	
West Building	288	532	В	Wall	Drywall	White	Intact	0	
West Building	289	505	A	Wall	Conctrete	White	Intact	0	
West Building	290	505	A	Roll-up door	Metal	Gray	Intact	0	
West Building	291	505	A	Roll-up frame	Metal	Gray	Intact	0	
West Building	292	505	D	Column	Metal	Yellow	Fair	3.2	4 each
West Building	293	505	В	Wall	Drywall	White	Intact	0	
West Building	294	529	A	Wall	Drywall	White	Intact	0	
West Building	295	529	В	Wall	Drywall	White	Intact	0	
West Building	296	505	A	Floor	Concrete	Gray	Intact	0	
West Building	297	505	A	Safety stripe	Concrete	Yellow	Intact	0.01	
West Building	298	505	A	Door	Metal	Gray	Intact	0.05	
West Building	299	505	A	Doorframe	Metal	Gray	Intact	0.04	
West Building	300	501/502	A	Wall	Metal	White	Intact	0	
West Building	301	501/502	A	Column	Metal	White	Intact	0.01	
West Building	302	501/502	В	Wall	Drywall	Gray	Intact	0	
West Building	303	501/502	В	Door	Metal	Gray	Intact	0.01	
West Building	304	501/502	В	Doorframe	Metal	Gray	Intact	0.05	
West Building	305	501/502	В	Column	Metal	Red	Intact	0.04	
West Building	306	501/502	D	Sprinkler pipe	Metal	Red	Intact	0	
West Building	307	501/502	С	Wall	Metal	White	Intact	0.01	
West Building	308	501/502	С	Beams	Metal	Red	Intact	0	
West Building	309	501/502	С	Safety stripe	Concrete	Yellow	Poor	1.8	150 LF
West Building	310	Exterior	D	Wall	Concrete	White	Intact	0.22	
West Building	311	Exterior	D	Downspout	Metal	White	Intact	0.02	
West Building	312	Exterior	D	Door	Metal	Gray	Intact	0	
West Building	313	Exterior	D	Doorframe	Metal	Gray	Intact	0.02	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
West Building	314	Exterior	D	Awning	Metal	Gray	Fair	0	
West Building	315	Exterior	D	Column	Concrete	White	Intact	0	1
West Building	316	Exterior	D	Sprinkler pipe	Metal	White	Intact	0	1
West Building	317	Exterior	D	Column	Concrete	Green	Intact	0	1
West Building	318	Exterior	D	Bollard	Metal	Red	Fair	0.02	1
West Building	319	Exterior	D	Window frame	Metal	White	Intact	0.05	1
West Building	320	Exterior	D	Dbl door	Metal	Gray	Intact	0	1
West Building	321	Exterior	D	Dbl doorframe	Metal	Gray	Intact	0.01	1
West Building	322	Exterior	D	Wall	Metal	White	Intact	0.01	·
West Building	323	Exterior	D	Railing	Metal	Gray	Fair	0	·
West Building	324	Exterior	D	Ladder	Metal	White	Poor	0	·
West Building	325	Exterior	С	Wall	Concrete	White	Intact	0	·
West Building	326	Exterior	С	Roll-up frame	Metal	White	Intact	0	·
West Building	327	Exterior	С	Railing	Metal	Yellow	Fair	0	1
West Building	328	Exterior	С	Ramp	Concrete	Yellow	Intact	0	1
West Building	329	Exterior	С	Bollard	Metal	Yellow	Intact	0	1
West Building	330	Exterior	С	Trim	Concrete	Gray	Intact	0	·
West Building	331	Exterior	С	Fire riser pipe	Metal	Red	Intact	1.1	1 each
West Building	332	Exterior	С	Door	Metal	Gray	Intact	0.05	
West Building	333	Exterior	C	Doorframe	Metal	Gray	Intact	0.04	
West Building	334	Exterior	В	Wall	Concrete	White	Intact	0	
West Building	335	Exterior	В	Column	Concrete	Gray	Intact	0.02	
West Building	336	Exterior	В	Bollard	Metal	Yellow	Intact	0	
West Building	337	Exterior	В	Guardrail	Metal	Yellow	Intact	0	
West Building	338	Exterior	В	Downspout	Metal	White	Intact	0	
West Building	339	Exterior	В	Roll-up door	Metal	Gray	Intact	0	
West Building	340	Exterior	В	Rool-up frame	Metal	Gray	Intact	0	
West Building	341	Exterior	В	Fire hydrant	Metal	Yellow	Intact	0	
West Building	342	Exterior	В	Bollard	Metal	Red	Intact	4.5	2 each
West Building	343	Exterior	В	Downspout	Metal	White	Intact	0	
West Building	344	Exterior	В	Gas line	Metal	White	Intact	0	·
West Building	345	Exterior	В	Support bracket	Metal	White	Intact	0	
West Building	346	High bay interior	C	Structure Steel	Metal	Red	Intact	2.1	T/0

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Warehouse	1	Interior	A	Wall	Concrete	White	Intact	0	_
Warehouse	2	Interior	В	Wall	Concrete	White	Intact	0.01	
Warehouse	3	Interior	C	Framing	Wood	White	Intact	0.01	
Warehouse	4	Interior	D	Wall	Concrete	White	Intact	0.01	
Warehouse	5	Interior	N/A	I-beam	Metal	White	Intact	0	
Warehouse	6	Interior	N/A	Decking/beams	Wood	White	Intact	0.01	
Warehouse	7	Interior	В	Door	Metal	Blue	Intact	0	
Warehouse	8	Interior	В	Doorframe	Metal	Bluie	Intact	0.05	
Warehouse	9	Interior	C	Roll-up door	Metal	Gray	Intact	0	
Warehouse	10	Interior	D	Pipe	Metal	Yellow	Intact	0	
Warehouse	11	Interior	A	Pipe	Metal	Red	Intact	0.28/210 ppm	
Warehouse	12	Interior	C	Wall	Drywall	White	Intact	0	
Warehouse	13	Exterior	C	Wall	Metal	White	Intact	0	
Warehouse	14	Exterior	D	Wall	Concrete	White	Intact	0	
Warehouse	15	Exterior	D	HVAC	Metal	White	Intact	0	
Warehouse	16	Exterior	D	Pipe	Metal	Red	Intact	0.8	40 LF
Warehouse	17	Exterior	D	Gas pipe	Metal	White	Intact	0	
Warehouse	18	Exterior	D	Fasica	Wood	Gray	Intact	0	

Building	Test#	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
High Bay	1	Exterior	В	Pipe	Metal	Red	Intact	2.1	1 pipe
High Bay	2	Exterior	A	Support post	Metal	Yellow	Intact	0.01	
High Bay	3	Interior	D	Phoenix	Metal	White	Intact	0.01	
High Bay	4	Exterior	A	Wall	Metal	White	Intact	0	
High Bay	5	Exterior	A	Roll-up doorframe	Metal	Blue	Intact	0	
High Bay	6	Exterior	В	Door	Metal	White	Intact	0	
High Bay	7	Exterior	В	Doorframe	Metal	Blue	Intact	0	
High Bay	8	Interior	A	Beam	Metal	Red	Intact	0	
High Bay	9	Interior	С	Vent	Metal	White	Intact	0	
High Bay	10	Interior	D	Panel	Metal	Blue	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Haz Shed	1	Exterior	A	Beam	Metal	Gray	Intact	0	
Haz Shed	2	Exterior	A	Wall	Metal	Blue	Intact	0	
Haz Shed	3	Exterior	A	Support post	Metal	Red	Intact	0.01	
Haz Shed	4	Exterior	A	Pipe	Metal	Red	Intact	0	
Haz Shed	5	Exterior	A	Support post	Metal	Blue	Intact	0	
Haz Shed	6	Exterior	В	Wall	Metal	White	Intact	0	
Haz Shed	7	Exterior	C	Eaves	Metal	White	Intact	0	
Haz Shed	8	Interior	A	Beam	Metal	Green	Intact	0.02	
Haz Shed	9	Interior	C	Beam	Metal	Red	Intact	0	
Haz Shed	10	Interior	N/A	Safety stripe	Concrete	Yellow	Poor	0	
Haz Shed	11	Interior	C	Pipe	Metal	Green	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Small Guard Shack	1	Exterior	A	Wall	Metal	White	Intact	0	
Small Guard Shack	2	Exterior	A	Door	Metal	Gray	Intact	0	
Small Guard Shack	3	Exterior	В	Window frame	Metal	Gray	Intact	0	
Small Guard Shack	4	Exterior	C	Fascia	Metal	Gray	Intact	0	
Small Guard Shack	5	Interior	A	Door	Metal	Gray	Intact	0.01	
Small Guard Shack	6	Interior	A	Doorframe	Metal	Gray	Intact	0	
Small Guard Shack	7	Interior	A	Wall	Metal	White	Intact	0	
Small Guard Shack	8	Interior	В	Window sill	Metal	Gray	Intact	0	
Small Guard Shack	9	Interior	C	Shelf	Metal	Gray	Intact	0.02	
Small Guard Shack	10	Interior	N/A	Ceiling	Metal	White	Intact	0	
Small Guard Shack	11	Interior	A	Post	Metal	Gray	Intact	0	
Small Guard Shack	12	Exterior	В	I-beam	Metal	White	Intact	0.02	
Small Guard Shack	13	Exterior	В	Decking	Metal	White	Intact	0	
Small Guard Shack	14	Exterior	В	Pipe	Metal	Red	Intact	0.01	
Small Guard Shack	15	Exterior	В	Handrail	Metal	Gray	Intact	0.02	
Small Guard Shack	16	Exterior	D	Downspout	Metal	White	Intact	0	
Small Guard Shack	17	Exterior	D	Gutter	Metal	White	Intact	0	

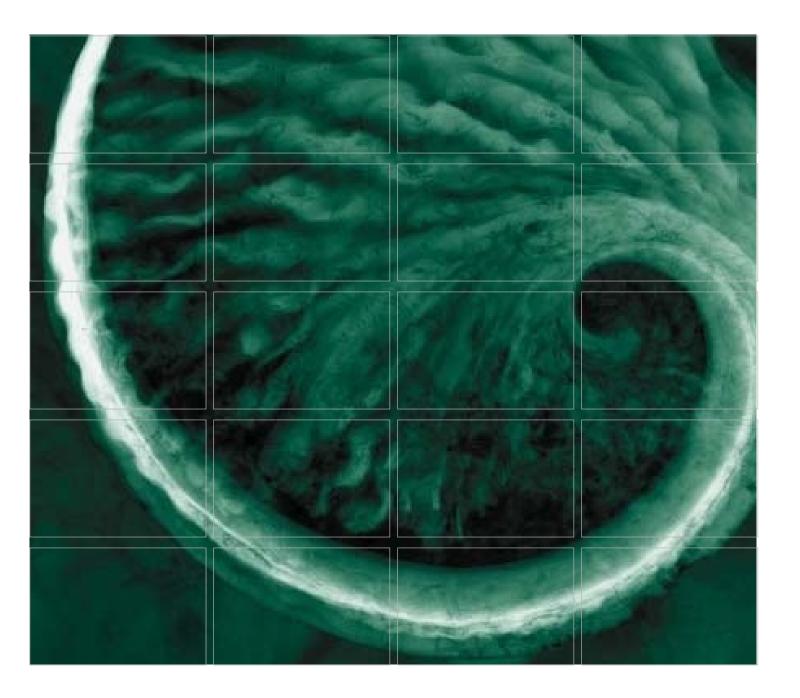
Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Lab	1	Interior	A	Ŵall	Metal	White	Intact	0	Î
Lab	2	Interior	A	Beam	Metal	White	Intact	0	
Lab	3	Interior	A	Pipe	Metal	White	Intact	0.01	
Lab	4	Interior	A	Baseboard	Wood	White	Intact	0.01	
Lab	5	Interior	В	Dbl door	Metal	Blue	Intact	0	
Lab	6	Interior	В	Dbl doorframe	Metal	White	Intact	0.03	
Lab	7	Interior	В	I-beam	Metal	White	Intact	0	
Lab	8	Interior	В	Wall	Drywall	White	Intact	0	
Lab	9	Interior	C	Window frame	Wood	White	Intact	0.02	
Lab	10	Interior	D	Door	Metal	Blue	Intact	0.01	
Lab	11	Interior	D	Doorframe	Metal	White	Intact	0	
Lab	12	Exterior	A	Wall	Metal	White	Intact	0	
Lab	13	Exterior	A	Fascia	Metal	White	Intact	0	
Lab	14	Exterior	A	Downspout	Metal	White	Intact	0	
Lab	15	Exterior	В	Ladder	Metal	White	Intact	0.02	
Lab	16	Exterior	В	Pipe	Metal	White	Intact	0.02	
Lab	17	Exterior	В	Dbl door	Metal	Gray	Intact	0.23/100 ppm	
Lab	18	Exterior	В	Dbl doorframe	Metal	Gray	Intact	0	
Lab	19	Exterior	В	Wall	Metal	White	Intact	0.02	
Lab	20	Exterior	C	Wall	Metal	White	Intact	0.03	
Lab	21	Exterior	C	Patio ceiling	Metal	White	Intact	0.02	
Lab	22	Exterior	C	Beam	Metal	White	Intact	0.01	
Lab	23	Exterior	C	Lg. I-beam	Metal	White	Intact	0.01	
Lab	24	Exterior	C	Sm. I-beam	Metal	White	Intact	0	
Lab	25	Exterior	D	Wall	Metal	White	Intact	0	
Lab	26	Exterior	D	Eave	Metal	White	Intact	0.01	
Lab	27	Exterior	D	Fascia	Metal	White	Intact	0	
Lab	28	Exterior	D	Door	Metal	Gray	Intact	0	
Lab	29	Exterior	D	Doorframe	Metal	Gray	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Credit Union	1	Main room	D	Wall	Drywall	White	Intact	0	-
Credit Union	2	Main room	A	Wall	Drywall	White	Intact	0.06	
Credit Union	3	Main room	В	Wall	Drywall	White	Intact	0.05	
Credit Union	4	Main room	С	Wall	Drywall	White	Intact	0	
Credit Union	5	Restroom	В	Wall	Drywall	White	Intact	0	
Credit Union	6	Restroom	В	Door	Wood	White	Intact	0	
Credit Union	7	Restroom	В	Doorframe	Wood	White	Intact	0	
Credit Union	8	Restroom	A	Sink	Porcelain	White	Intact	0.03	
Credit Union	9	Restroom	A	Toilet	Porcelain	White	Intact	0.05	
Credit Union	10	Main room	В	Wall panel	Wood	Stain	Intact	0	
Credit Union	11	Main room	N/A	Ceiling beam	Wood	Stain	Intact	0	
Credit Union	12	Main room	N/A	Post	Wood	White	Intact	0	
Credit Union	13	Main room	С	Cabinets	Wood	White	Intact	1	1 set
Credit Union	14	Kitchen	С	Cabinets	Wood	White	Intact	0	
Credit Union	15	Kitchen/main	C	Door/window frames	Metal	Brown	Intact	0	
Credit Union	16	Exterior	A	Wall	Stucco	White	Intact	0	
Credit Union	17	Exterior	В	Wall	Stucco	White	Intact	0	
Credit Union	18	Exterior	C	Wall	Stucco	White	Intact	0	
Credit Union	19	Exterior	D	Wall	Stucco	White	Intact	0	
Credit Union	20	Exterior	В	Window	Metal	Brown	Intact	0	
Credit Union	21	Exterior	С	Door	Metal	Brown	Intact	0	
Credit Union	22	Exterior	С	Handrail	Metal	Gray	Intact	0	
Credit Union	23	Exterior	С	Post	Metal	Gray	Poor	0	
Credit Union	24	Exterior	D	Downspout	Metal	White	Intact	0	
Credit Union	25	Exterior	A	Curb	Concrete	Red	Fair	0	
Credit Union	26	Exterior	A	Curb	Concrete	Yellow	Intact	0	
Credit Union	27	Exterior	D	Curb	Concrete	Blue	Intact	0.15/360 ppm	
Credit Union	28	Exterior	D	Curb	Concrete	Lt. blue	Intact	0.04	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
Guard Shack	1	Restroom	N/A	Ceiling	Drywall	White	Intact	0.02	
Guard Shack	2	Restroom	С	Doorframe	Wood	Gray	Intact	0.01	
Guard Shack	3	Restroom	A	Toilet	Porcelain	White	Intact	0.01	
Guard Shack	4	Restroom	A	Wall	Drywall	White	Intact	0	
Guard Shack	5	Restroom	C	Door	Wood	Gray	Intact	0	
Guard Shack	6	Restroom	A	Sink	Porcelain	White	Intact	0	
Guard Shack	7	Main room	D	Wall	Drywall	White	Intact	0.01	
Guard Shack	8	Main room	N/A	Ceiling	Drywall	White	Intact	0.01	
Guard Shack	9	Main room	В	Door	Metal	Gray	Fair	0	
Guard Shack	10	Main room	В	Doorframe	Metal	Gray	Fair	0	
Guard Shack	11	Exterior	D	Curb	Concrete	Yellow	Poor	3.6	60 LF
Guard Shack	12	Exterior	D	Curb	Concrete	Red	Fair	1	T/0
Guard Shack	13	Exterior	C	Railing	Metal	Gray	Intact	0.01	
Guard Shack	14	Exterior	A	Wall	Stucco	White	Intact	0	
Guard Shack	15	Exterior	A	Roof	Metal	Blue	Intact	0	
Guard Shack	16	Exterior	В	Door	Metal	Gray	Intact	0	
Guard Shack	17	Exterior	В	Doorframe	Metal	White	Intact	0	
Guard Shack	18	Exterior	D	Fascia	Wood	White	Intact	0	
Guard Shack	19	Exterior	D	Railing	Metal	Gray	Intact	0	
Guard Shack	20	Exterior	С	Safety stripe	Concrete	Blue	Fair	0	
Guard Shack	21	Exterior	C	Safety stripe	Concrete	White	Intact	0	

Building	Test #	Room/Area	Location	Component	Substrate	Color	Cond.	Pb	Rep.
NE Trailer	1	Interior 1	A	Wall	Wood	White	Intact	0	_
NE Trailer	2	Interior 1	С	Wall	Drywall	White	Intact	0	
NE Trailer	3	Interior 1	D	Door	Metal	Gray	Intact	0	
NE Trailer	4	Interior 1	D	Doorframe	Metal	Gray	Intact	0	
NE Trailer	5	Interior 1	D	Window frame	Wood	White	Intact	0	
NE Trailer	6	Interior 2	В	Wall	Wood	White	Intact	0	
NE Trailer	7	Interior 2	С	Electric panel	Metal	White	Intact	0	
NE Trailer	8	Interior 2	D	Window frame	Wood	White	Intact	0	
NE Trailer	9	Interior 2	A	Door	Wood	Gray	Intact	0	
NE Trailer	10	Exterior	D	Deck	Metal	Gray	Intact	0	
NE Trailer	11	Exterior	D	Stair tread	Metal	Gray	Intact	0	
NE Trailer	12	Exterior	D	Handrail	Metal	Gray	Intact	0	
NE Trailer	13	Exterior	D	Deck	Metal	White	Intact	0	
NE Trailer	14	Exterior	A	Door	Metal	White	Intact	0	
NE Trailer	15	Exterior	A	Doorframe	Metal	White	Intact	0	
NE Trailer	16	Exterior	D	Downspout	Metal	White	Intact	0.01	
NE Trailer	17	Exterior	В	Wall	Metal	White	Intact	0	
NE Trailer	18	Exterior	В	Skirting	Vinyl	White	Intact	0	
NE Trailer	19	Exterior	С	Sprinkler	Metal	Red	Intact	0	
NE Trailer	20	Exterior	С	Sofit	Metal	White	Intact	0	
NE Trailer	21	Exterior	D	Roof	Metal	White	Intact	0.01	

Lead Paint Chip Sample Results


Bldg.	Sample #	Test#	Room/Area	Component	Substrate	Color	Cond.	Pb
East Bldg.	EB-PC01	249	810	Column	Metal	Gray/yellow	Fair	14000
East Bldg.	EB-PC02	NA	738	Hoist Structure Steel	Metal	Yellow	Poor	320
West Bldg.	WB-PC01	310	W exterior	Wall	Concrete	White	Intact	3300
West Bldg.	WB-PC02	218-222	404 Mezz.	Structure steel	Metal	Gray	Intact	530
Warehouse	WH-PC01	11	Interior	Pipe	Metal	Red	Intact	210
Lab	LB-PC01	17	Exterior	Dbl door	Metal	Gray	Intact	100
Credit Union	CU-PC01	27	Exterior	Curb	Concrete	Blue	Intact	360

Laboratory Analysis & Chain of Custody Forms

Certifications

APPENDIX D

PCB SURVEY REPORT

PCB Sampling Report

ITT Cannon 666 East Dyer Road Santa Ana, California

June 2016

Prepared for:

ITT LLC

www.erm.com

ITT LLC

PCB Sampling Report

ITT Cannon 666 East Dyer Road Santa Ana, California

June 2016

Project No. 0349890

Jason Fernet, P.E., L.E.P

Project Manager

Tony Parenteau *Partner-in-Charge*

Environmental Resources Management

2875 Michelle Drive, Suite 200 Irvine, California 92606

T: 949-623-4700 F: 949-623-4711

TABLE OF CONTENTS

LIST	OF FIG	GURES	III
LIST	OF AC	CRONYMS	IV
1.0	INTR	RODUCTION	1
	1.1	PURPOSE	1
	1.2	SITE LOCATION	1
2.0	SITE	CHARACTERIZATION	2
	2.1	SAMPLE LOCATION SELECTION	2
	2.2	PAINT CHIP SAMPLES	2
	2.3	WIPE SAMPLES	3
	2.4	BULK MATERIAL SAMPLES	3
	2.5	CAULKING SAMPLES	3
	2.6	CONCRETE SAMPLES	4
	2.7	SAMPLE PACKAGING, ANALYTICAL PROCEDURES AND QA/QC	4
	2.8	SAMPLE EQUIPMENT DECONTAMINATION	5
	2.9	WASTE MANAGEMENT AND DISPOSAL	5
	2.10	HEALTH AND SAFETY PLAN	6
3.0	SAM	PLING RESULTS	7
	3.1	PAINT CHIP SAMPLES	7
	3.2	WIPE SAMPLES	8
	3.3	BULK MATERIALS SAMPLES	8

	3.4	CAULI	KNG SAMPLES	g
	3.5	CONC	RETE SAMPLES	g
	3.6	DATA	QUALITY ASSESSMENT/DATA USABILITY EVALUATION	10
		3.6.1	Reporting Limits	10
		3.6.2	,	10
4.0	CON	ICLUSIO.	NS AND RECOMMENDATIONS	12

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Building Addition Chronology
Figure 3	Sample Location Map – East Building

Figure 4 Sample Location Map - West Building

LIST OF TABLES

Table 1	Summary of Paint Chip Samples
Table 2	Summary of Wipe Samples
Table 3	Summary of Bulk Materials PCB Sampling
Table 4	Summary of Caulking Sample Results
Table 5	Summary of Concrete Sample Results

LIST OF APPENDICIES

APPENDIX A - PHOTOLOGS OF SAMPLE LOCATIONS

APPENDIX B - LABORATORY REPORTS

LIST OF ACRONYMS

°C Degrees Celsius

μg/100cm² Micrograms per 100 square centimeters

AETL American Environmental Testing Laboratory

CFR Code of Federal Regulations

COC Chain-of-custody

DQA Data Quality Assessment

DUE Data Usability Evaluation

ERM ERM-West, Inc.

HASP Health and Safety Plan

IDW Investigation derived waste

mg/kg Milligrams per kilogram

MS/MSD Matrix spike/Matrix spike duplicate

OD Outside diameter

oz. Ounce

ppm Parts per million

PCBs Polychlorinated biphenyls

PPE Personal Protective Equipment

QA/QC Quality assurance/Quality control

SAP Sampling and Analysis Plan

TSCA Toxic Substances Control Act

USEPA U.S. Environmental Protection Agency

1.0 INTRODUCTION

1.1 PURPOSE

ERM-West, Inc. (ERM) has prepared this *PCB Sampling Report* (Report) to document the efforts completed to characterize polychlorinated biphenyls (PCB) at the ITT (facility/site) located at 666 East Dyer Road, Santa Ana, California.

This Report is intended to satisfy the Federal Toxic Substances Control Act (TSCA) codified in changes to the Code of Federal Regulations (CFR) 40 CFR § 761 (the Rule). The Rule, as amended, establishes specific requirements governing self-implementing investigation, cleanup, and disposal of PCB remediation and bulk wastes. This Report documents the pre-demolition work conducted by ERM and the sampling results for potential PCB impacts on porous surfaces (concrete), paint, caulk, bulk materials and wipe-samples from oil stained surfaces in the former Die Cast Building at the site.

1.2 SITE LOCATION

The site is located at 666 East Dyer Road, Santa Ana, Orange County, California 92705 (Figure 1). The elevation of the site is approximately 51 feet above mean sea level. The property is surrounded by brick walls and a chain link fence with industrial and commercial businesses adjacent on all four sides of the site.

The approximate 25 acre parcel contains two main buildings (east and west). The east building contains manufacturing areas, laboratories, and office space. The west building contains warehouse space, assembly areas, and administrative offices. The site also contains several appurtenant structures including warehouses, commercial and laboratory out buildings, a guard shack and an office trailer. Based on available records, the original buildings were built in the 1950's with additions from 1962 to 1981. A chronology of building additions is presented in Figure 2.

2.0 SITE CHARACTERIZATION

The following section outlines methodologies that were employed to sample the various suspect PCB-containing materials at the site.

2.1 SAMPLE LOCATION SELECTION

ERM conducted a cursory inventory of suspect PCB-containing materials present at the site, which was utilized to determine the ultimate number and locations of the samples to be collected. The locations of the samples collected from the east building are depicted on Figure 3 and the west building sample locations are depicted on Figure 4.

2.2 PAINT CHIP SAMPLES

In accordance with 40 CFR §761.283(a)(1), ERM collected a paint chip sample for each paint color and type of surface coated (i.e., railings, tanks, structural beams, pipes, etc.). ERM ensured samples were spatially distributed throughout the site for each type of surface coated. In addition, where different sub-layer colors were observed in the field, additional sampling was conducted to ensure each sub-layer of paint was evaluated. **Note**: ERM did not sample individual paint layers, but did evaluate the painted surfaces in a manner that sufficiently evaluated each paint color.

Paint chip sampling followed the procedures as detailed in Section V.C.1 of the U.S. Environmental Protection Agency (USEPA) *Technical Guidance* for Determining the Presence of Polychlorinated Biphenyls (PCBs) at Regulated Concentrations on Vessels (Ships) to be Reflagged.

Paint chip samples were obtained using hand tools (e.g. paint scraper, chisel, etc.). The paint layer was removed to the bare substrate and any sub layers of paint were noted in field documentation. The area required stripping in order to collect a sufficient mass of paint material, which varied depending on type of paint. The Photolog in Appendix A documents the sample size and location.

ERM collected 58 paint chip samples including duplicates and matrix spike/matrix spike duplicate (MS/MSD) samples. The locations of these samples are shown on Figures 3 and 4 (designated PC-###).

2.3 WIPE SAMPLES

Wipe samples were collected to evaluate the surfaces throughout the Die Cast room. ERM followed the procedures outlined in 40 CFR 761 Subpart P "Sampling Non-Porous Surfaces For Measurement-Based Use, Reuse, And On-Site Or Off-Site Disposal" to determine the number and location of samples to be collected within the Die Cast room. Generally wipe samples were collected from oil-coated surfaces such as metal ducts, vents, beams and ceilings in the Die Cast room.

ERM collected a total of 6 wipe samples. The locations of these samples are shown on Figure 3 (designated WP-###).

Standard wipe tests, as defined in 40 CFR §761.123, were collected from surfaces within the Die Cast room. A standard-size disposable template (10 centimeters [cm] x 10 cm) was used to delineate the sample area; the wiping medium was a gauze pad or glass wool of known size which was saturated with hexane.

2.4 BULK MATERIAL SAMPLES

ERM identified suspect PCB bulk material present (e.g. sediment, dust, debris, etc.) and the quantities at which they are present.

Bulk material samples were obtained using hand tools (e.g. paint scraper, chisel, etc.). ERM collected 6 samples of miscellaneous bulk material within the west building and the Die Cast room. The locations of the caulking and bulk material samples are shown on Figures 3 and 4 (designated BM-###).

2.5 CAULKING SAMPLES

ERM identified suspect PCB caulking, glazing and weather stripping and the quantities at which they are present.

Samples were obtained using hand tools (e.g. paint scraper, chisel, etc.). ERM collected a total of 14 caulking, glazing and/or weather stripping from the west and east buildings. The locations of the caulking samples are shown on Figures 3 and 4 (designated CK-###).

2.6 CONCRETE SAMPLES

Concrete samples were collected from the walls of the Die Cast Building to assess potential PCB impacts resulting from operations in this room. The paint present on the walls was scraped off prior to collecting the concrete samples.

Concrete samples were collected from the surface (0-0.5 inches) in accordance with USEPA Region 1 *Standard Operating Procedure for Sampling Porous Surfaces for PCBs,* May 2011 (Appendix A). A rotary impact hammer drill, equipped with a ¾-inch outside diameter (OD) bit, was used to generate a fine powder for analysis. A minimum of 6 boreholes were drilled at each location to generate the mass required for analysis. The bit was advanced to a depth of 0.5 inch and the dust accumulated was placed in the sample container.

ERM collected 28 samples, each from a depth interval of 0-0.5 inch. The locations of these samples are shown on Figures 3 and 4 (designated CC-###).

2.7 SAMPLE PACKAGING, ANALYTICAL PROCEDURES AND QA/QC

All samples were analyzed using the methods specified in 40 CFR §761.272. Specifically, extractions were completed using USEPA Method 3540C (Soxhlet). Wipe sample results were reported as micrograms of PCBs per 100 square centimeters ($\mu g/100 \text{ cm}^2$); all other sample results were reported on a dry weight basis as milligrams of PCBs per kilogram (mg/kg) of sample (parts per million [ppm] by weight). Aroclors reported by the laboratory are 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268.

The materials were placed in containers provided by the laboratory (i.e., 4 oz. glass with plastic lid) and transported to the off-site laboratory for analysis. Samples were shipped, refrigerated and maintained at ≤ 4°C until the time of extraction and analysis. Samples were submitted under proper chain-of-custody (COC) procedures to American Environmental Testing Laboratory (AETL) in Burbank, California. AETL is certified by the California Department of Public Health No. 1541. The COC is documented with the Laboratory Analysis Reports in Appendix B.

Quality assurance and quality control (QA/QC) measures enhance and document the quality of analytical data. QA involves planning,

implementation, assessment, reporting, and quality improvement to establish the reliability of laboratory data. QC procedures are the specific tools that are used to achieve this reliability.

The QA/QC samples were collected, and the Data Quality Assessment (DQA) and Data Usability Evaluation (DUE) process was used to evaluate the analytical data.

One field duplicate (a second sample collected at the same sampling location) was collected for every 10 discrete samples per each matrix. Field duplicates represent the precision of the entire method, site heterogeneity, field sampling, and laboratory analysis.

Additional volume of sample was collected to support laboratory MS/MSD analysis, which was collected at a frequency of 1 for every 20 discrete samples per matrix. Field duplicates and MS/MSD samples were not collected for wipe samples.

2.8 SAMPLE EQUIPMENT DECONTAMINATION

Prior to sampling each location, equipment such as coring bits, hammer drill bits, and scrapers were decontaminated in accordance with 40 CFR §761.79 (c)(2) to prevent cross-contamination.

Decontamination residues were containerized in accordance with 40 CFR §761.79(g), as discussed below in Section 2.7. Recordkeeping of the decontamination events will be maintained in accordance with the requirements in 40 CFR 761.79(f)(2). The procedure was implemented in a manner that is protective of human health and the environment consistent with the requirements in 40 CFR 761.79(e).

The procedure detailed above follows the requirements of 40 CFR §761.79 (c)(2), therefore no sampling is required.

2.9 WASTE MANAGEMENT AND DISPOSAL

PCB-containing investigation derived waste (IDW) including incidental sample material, decontamination wash waters, and personal protective equipment (PPE) generated during sampling was managed in accordance with the provisions detailed in 40 CFR §761.61(a)(5)(v).

These materials were placed within the Die Cast Building and will be disposed of offsite as PCB remediation waste.

2.10 HEALTH AND SAFETY PLAN

In accordance with 40 CFR 1910, all of the work conducted at the facility was governed by the procedures set forth in the site-specific Health and Safety Plan (HASP). The HASP included the identification of exclusion, contamination reduction and support zones, emergency contacts and services, decontamination procedures and PPE to be employed during specific work activities. The HASP also identified and addressed measures to protect workers from physical hazards that could be present during the sampling event. All workers participating in the field investigation activities had appropriate training including, but not limited to 40-hour HAZWOPER training.

3.0 SAMPLING RESULTS

This section presents the results for the PCB sampling conducted at the site. Laboratory reports are included in Appendix B. Refer to Figures 3 and 4 for sample locations and Appendix A for sample photographs.

3.1 PAINT CHIP SAMPLES

In total, ERM collected 58 samples, which includes 6 duplicate samples (PC-004, 005, 022, 042, 048 and 050) and two MS/MSD samples. Analytical results are provided in Table 1. In summary:

- Aroclor 1248 was detected above laboratory detection limits in 42 of the 58 samples collected;
- Aroclor 1254 was detected above laboratory detection limits in 37 of the 58 samples collected;
- Aroclor 1260 was detected above laboratory detection limits in 6 of the 58 samples collected;
- PCBs were detected at concentrations above the USEPA High
 Occupancy Criteria of 1.0 mg/kg in 49 of the 58 samples collected.
 Total PCB concentrations at these locations range from 1.63 to 605
 mg/kg. Of the 49 samples exceeding the criteria, 37 were collected in
 the east building of which 15 were within the Die Cast Building; and
- PCBs were detected at concentrations above the TSCA Applicability Criteria of 50.0 mg/kg in 19 of the 58 samples collected. Total PCB concentrations at these locations range from 103 to 605 mg/kg.
 - Of the 19 samples exceeding the TSCA Applicability Criteria, 15 were collected in the Die Cast Building.
 - All samples exceeding the criteria in the east building were collected within the Die Cast Building, with the exception of PC-045 and PC-056. Samples PC-045 and PC-056 were collected from support poles and contained total PCB concentrations of 113 and 108 mg/kg, respectively.
 - One sample (PC-004) collected in the west building contained an Aroclor 1260 concentration of 605 mg/kg. This sample was collected from the exterior concrete wall on the northeast corner of the building.

• PCBs were reported below laboratory detection limits in 9 of the 58 samples collected (PC-001, 004-DUP, 007, 010, 014, 015, 016, 019, and 020). It should be noted that the laboratory detection limit for PC-020 was elevated due to the presence of fibers in the paint resulting in matrix interference. This resulted in a detection limit of 5.0 mg/kg, exceeding the USEPA High Occupancy Criteria of 1.0 mg/kg.

3.2 WIPE SAMPLES

ERM collected 6 wipe samples from oil-coated surfaces in the Die Cast Building. Analytical results are provided in Table 2. In summary:

- Aroclor 1248 was detected above laboratory detection limits in all of the samples collected;
- Aroclor 1254 was detected above laboratory detection limits in 4 of the 6 samples collected; and
- PCBs were detected at concentrations exceeding the USEPA High Occupancy Criteria ($10 \,\mu g/100 cm^2$) in 2 of the 6 samples collected.
 - Aroclor 1248 and Aroclor 1254 were detected in WP-002 at concentrations of 59.6 and 14.9 μ g/100cm², respectively. WP-002 was collected from a ceiling fan in the Die Cast Building.
 - Aroclor 1248 was detected in WP-006 at a concentration of 22.1 μ g/100cm². WP-006 was collected from an oil splatter on the east wall of the Die Cast room.

3.3 BULK MATERIALS SAMPLES

ERM collected 6 bulk material and 14 caulking samples, which included one duplicate sample (CK-010). Analytical results are provided in Tables 3 and 4. In summary:

- Aroclor 1248 was detected in BM-003, 004, 005 and 006 with total PCB concentrations ranging from 6.68 to 30.0 mg/kg. These samples were collected from dust material in the Die Cast room; and
- PCBs were reported below laboratory detection limits in 2 of the 6 samples collected (BM-001 and 002). It should be noted that the laboratory detection limit for BM-002 was elevated due to the presence of fibers in the sample which resulted in matrix interference. This resulted in a detection limit of 5.0 mg/kg, exceeding the USEPA High Occupancy Criteria of 1.0 mg/kg.

3.4 CAULIKNG SAMPLES

ERM collected 6 bulk material and 14 caulking samples, which included one duplicate sample (CK-010). Analytical results are provided in Tables 3 and 4. In summary

- Aroclor 1248 was detected above laboratory detection limits in 8 of the 14 samples collected;
- Aroclor 1254 was detected above laboratory detection limits in 6 of the 14 samples collected;
- Aroclor 1260 was detected above laboratory detection limits in 5 of the 14 samples collected;
- PCBs were detected at concentrations above the USEPA High Occupancy Criteria of 1.0 mg/kg in all of the samples collected; and
- PCBs were detected at concentrations above the TSCA Applicability Criteria of 50.0 mg/kg in 8 of the 14 samples collected. Total PCB concentrations at these locations range from 79.7 to 237,000 mg/kg.
 - The highest PCB detections were found in the west building (CK-001 and CK-006) and contained total PCB concentrations of 165,000 and 237,000 mg/kg, respectively.
 - Sample CK-001 was collected from caulking on a northeast corner window of the west building. Sample CK-006 was collected from the black weather stripping on the same northeast corner window.

3.5 CONCRETE SAMPLES

ERM collected 9 concrete samples from the walls of the Die Cast Building. This total includes one duplicate sample collected at sample CC-001. Analytical results are provided in Table 5.

- Aroclor-1248 and Aroclor-1254 were detected above laboratory detection limits in all samples sample collected;
- PCBs were detected at concentrations above the USEPA High Occupancy Criteria of 1.0 mg/kg in all samples collected; and
- PCBs were detected at a concentration of 68.9 mg/kg, above the TSCA Applicability Criteria of 50.0 mg/kg, in one sample (CC-002). This sample was collected 4 feet from the floor in the western center of the Die Cast room.

3.6 DATA QUALITY ASSESSMENT/DATA USABILITY EVALUATION

3.6.1 Reporting Limits

Elevated reporting limits for non-detected Aroclors exceeded the EPA high occupancy criteria for the following samples:

- BM-002
- PC-020

For these samples, the elevated reporting limits were a result of matrix interference. It is judged that while the data is still usable for its intended purpose, the presence of the non-detected Aroclors at concentrations below the detection limits cannot be ruled out without further lines of evidence.

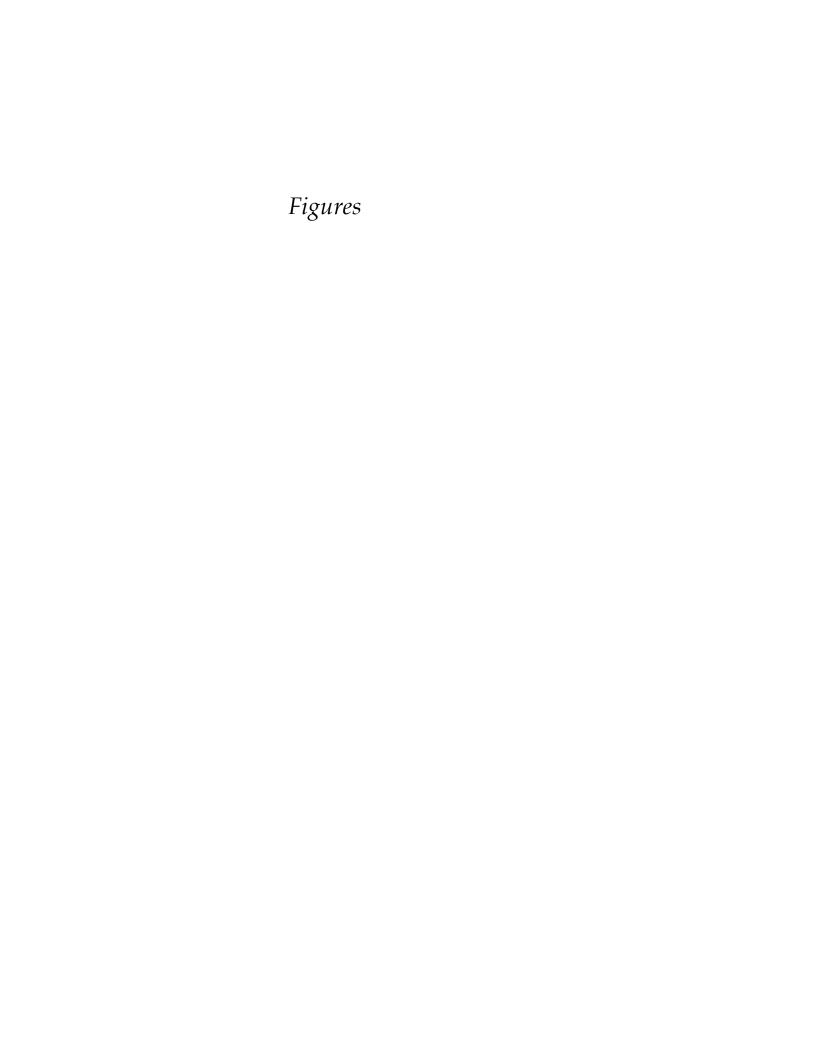
3.6.2 Surrogate Recovery

Surrogate recovery did not meet the acceptance criteria resulting in either a potential high or low bias for the following samples:

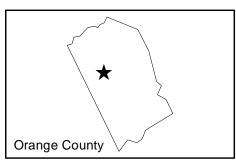
- PC-004
- PC-011
- PC-020
- PC-023
- PC-028
- PC-029
- PC-032
- PC-033
- PC-045
- CK-001
- CK-002

- CK-004
- CK-005
- CK-006
- CK-012

A further review of the quality control samples for these sample delivery groups found that in all cases the Laboratory Control Sample and Laboratory Control Sample Duplicate percent recoveries were all below acceptance criteria for Aroclor 1016 indicating that laboratory accuracy was not demonstrated. However, the Method Blanks, Relative Percent Differences, and Matrix Spike/ Matrix Spike Duplicate percent recoveries (where reported) were within acceptance criteria indicating an acceptable degree of laboratory precision. The data for the above samples are considered useable because in addition to acceptable precision; the reported concentrations are sufficiently above or below the associated EPA high or low occupancy criteria that the bias does not impact the determination of whether remediation is required for the associated sample material. Therefore, despite the quality control issue the data is considered usable for its intended purpose.

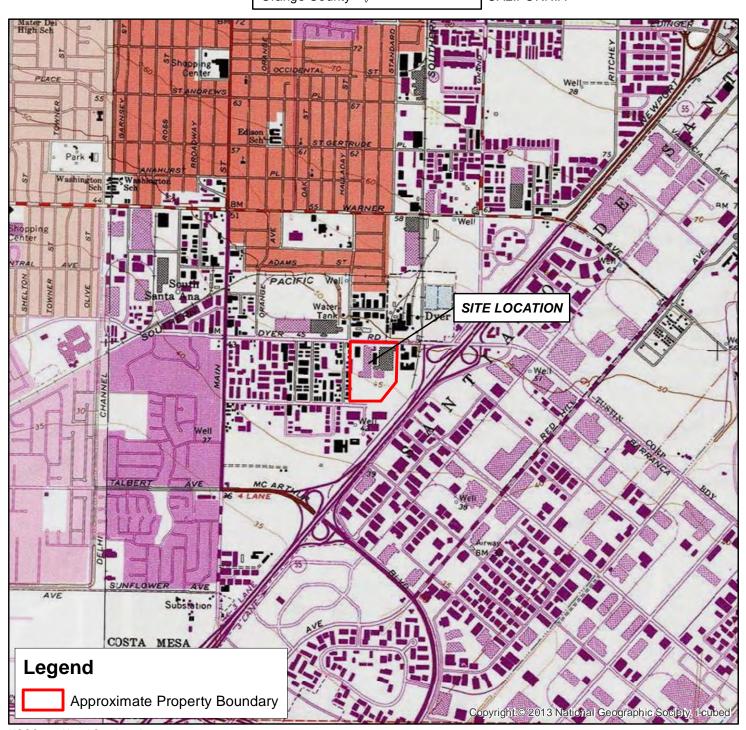

4.0 CONCLUSIONS AND RECOMMENDATIONS

As discussed above, total PCB concentrations exceeding the USEPA High Occupancy and TSCA Applicability Criteria have been detected in paint, concrete, caulking, wipe and bulk material samples. PCB detections were:

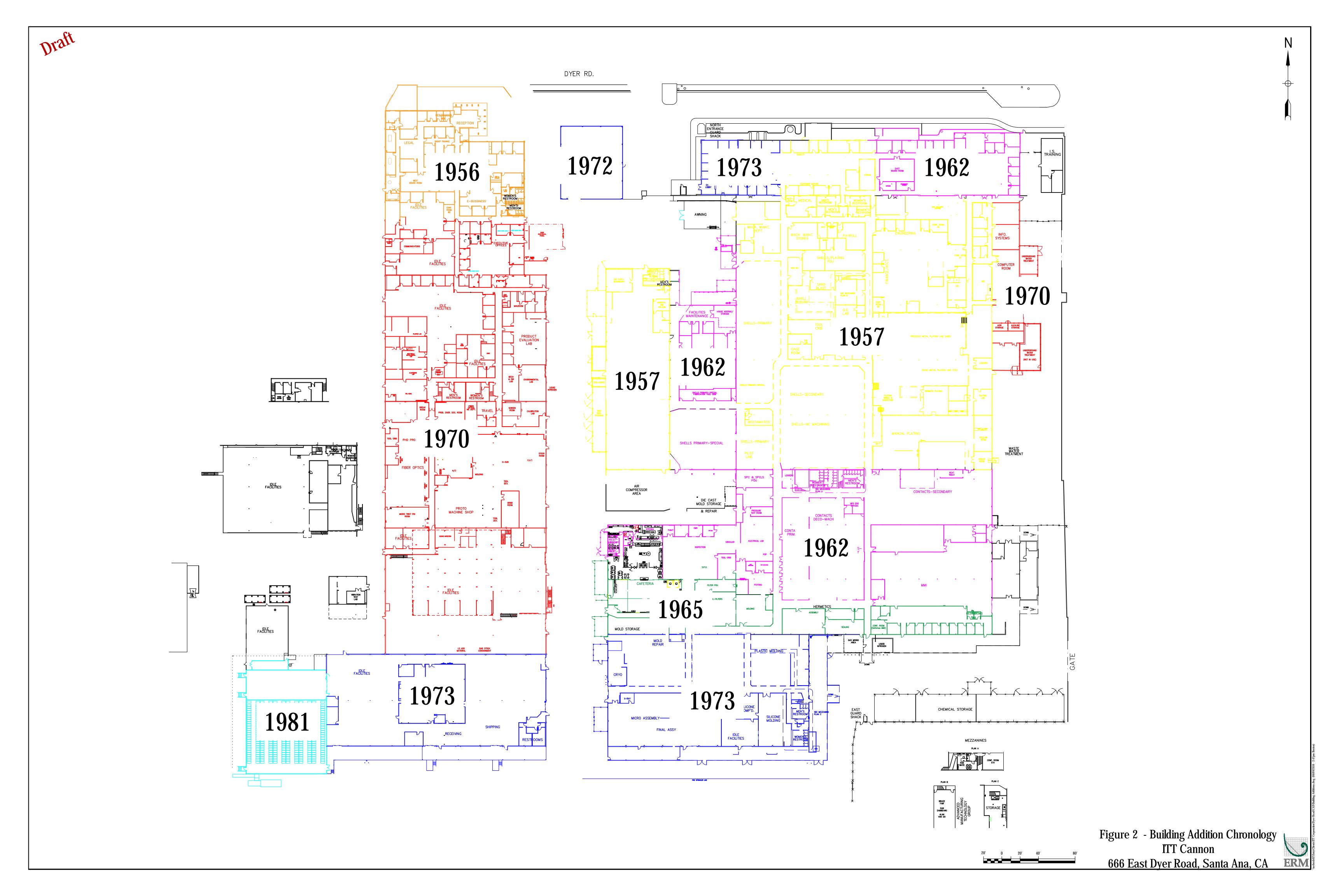

- Paint PCB concentrations exceeding the USEPA High Occupancy
 Criteria of 1.0 mg/kg were detected in 49 of the 58 samples collected at
 concentrations ranging from 1.63 to 605 mg/kg. PCBs were detected at
 concentrations above the TSCA Applicability Criteria of 50.0 mg/kg in
 19 of the 58 samples collected. Most of the samples exceeding the
 criteria were collected from the Die Cast Building in the east building.
- Wipe PCB concentrations exceeding the USEPA High Occupancy Criteria of $10 \,\mu g/100 cm^2$ were detected in 2 of the 6 samples collected. Both samples exceeding the criteria (WP-002 and WP-006) were collected in the Die Cast Building.
- Bulk Materials PCB concentrations exceeding the USEPA High
 Occupancy Criteria of 1.0 mg/kg were detected in 4 of the 6 samples
 collected. Total PCB concentrations at these locations range from 6.68
 to 30.0 mg/kg. These samples were collected from dust material in the
 Die Cast Building.
- Caulking PCBs were detected in all 14 samples collected at concentrations ranging from 3.15 to 237,000 mg/kg, all exceeding the USEPA High Occupancy Criteria of 1.0 mg/kg. PCBs were detected at concentrations exceeding the TSCA Applicability Criteria of 50.0 mg/kg in 8 of the samples collected.
- Concrete PCBs were detected in all samples collected at concentrations ranging from 5.58 to 68.9 mg/kg, all exceeding the USEPA High Occupancy Criteria of 1.0 mg/kg. PCBs were detected at a concentration of 68.9 mg/kg, above the TSCA Applicability Criteria of 50.0 mg/kg, in one sample (CC-002). All samples were collected from the walls of the Die Cast Building.

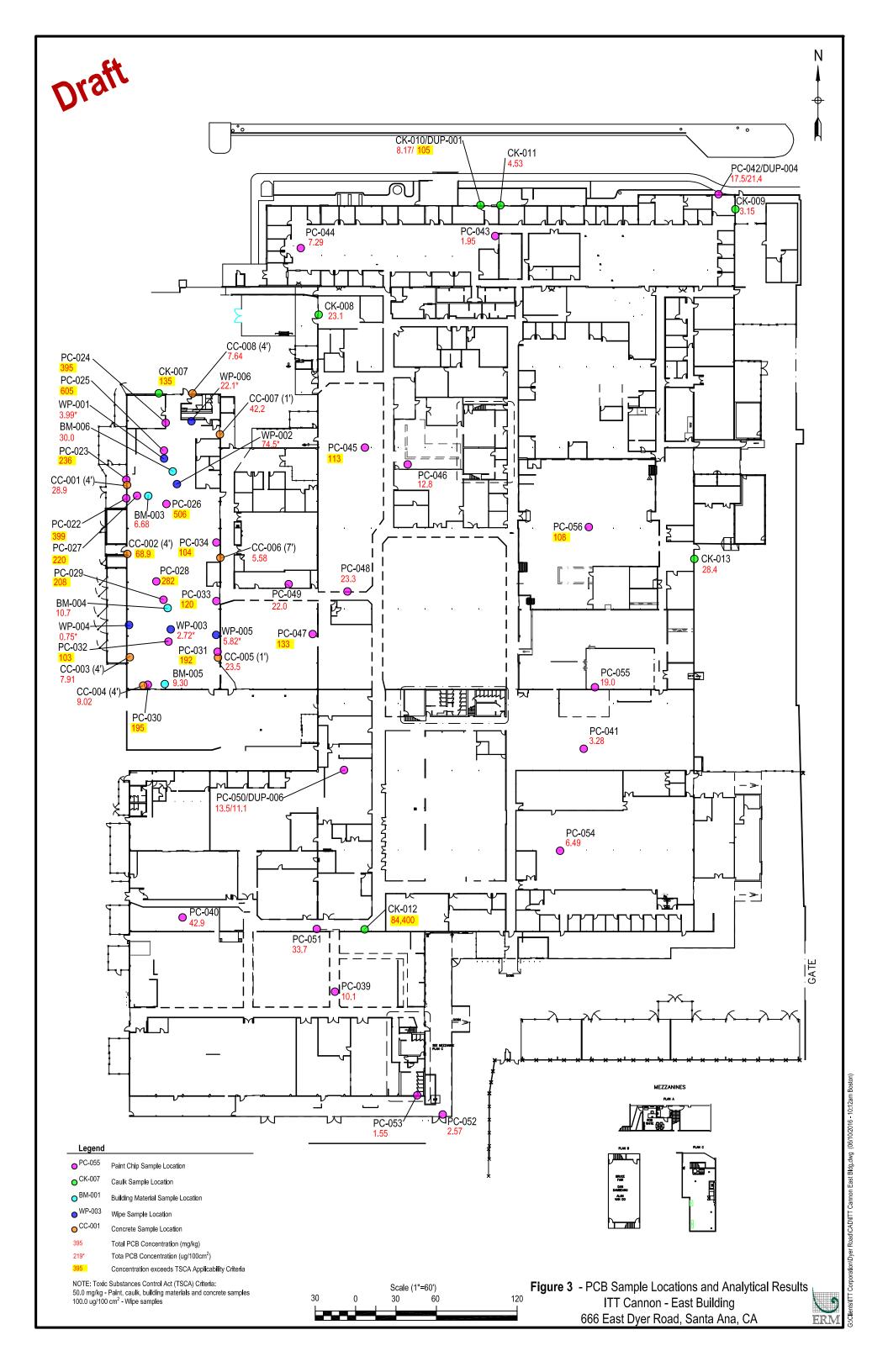
The results of the characterization indicated that building materials within the Die Cast Building are impacted by PCBs. The source of the impacts to building materials is uncertain due to the oil staining/coating throughout the room and the documented use of PCB containing oils. Therefore the PCB containing materials within the Die Cast Building will be considered PCB remediation waste.

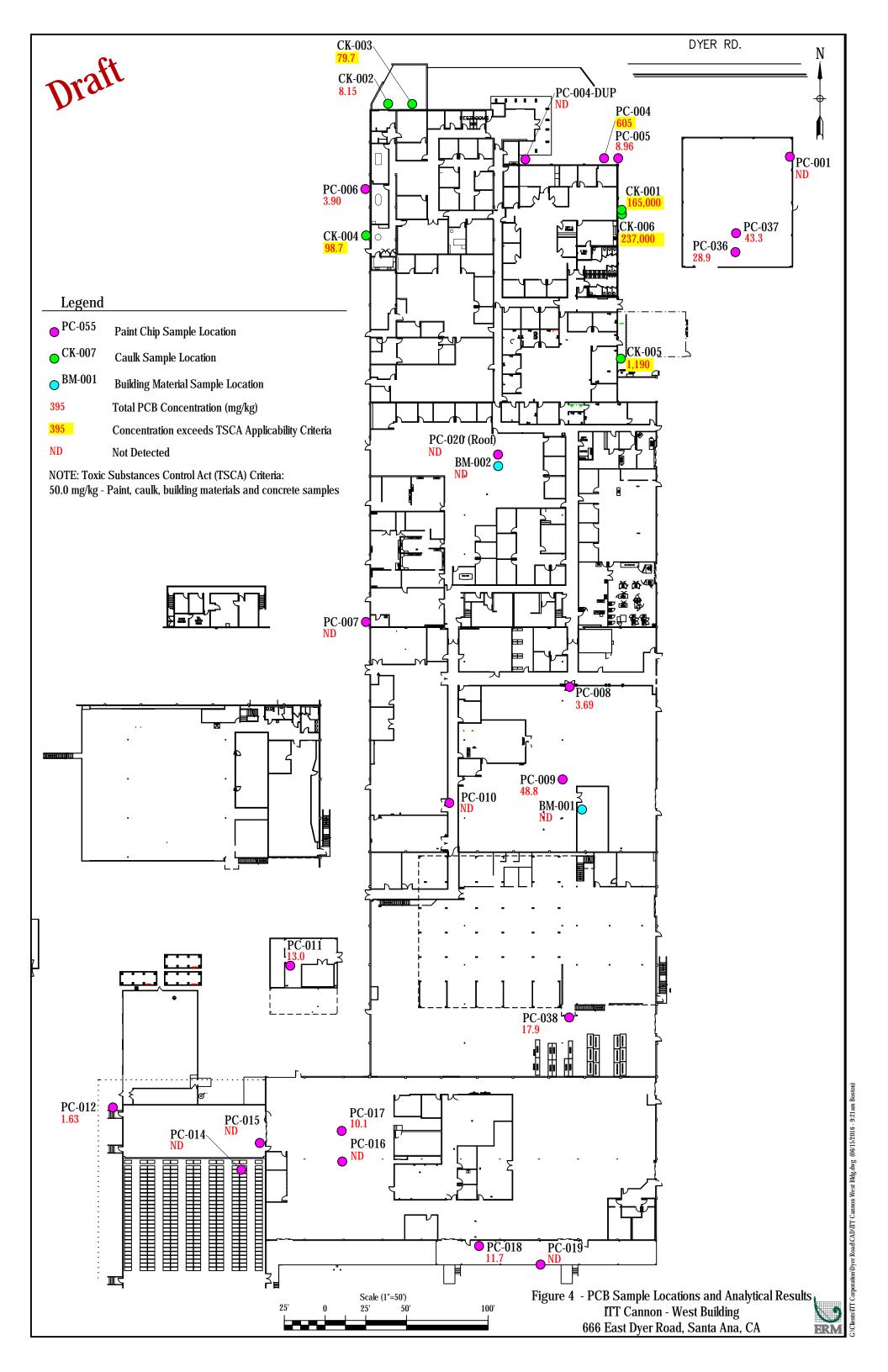
Material containing PCB concentrations in excess of the TSCA Applicability Criteria in the remainder of the facility outside of the Die Cast Building is defined as PCB bulk product waste. For the building materials outside of the Die Cast Building with total PCB concertation less the 50 mg/kg will be defined as excluded PCB products.



LAT. 33.708272 LON. -117.857828 ORANGE COUNTY CALIFORNIA




s\SiteLocationMaps\ITTCannon_MXD\Figure1-SiteLocationMap.mxd


USGS 1:24K 7.5' Quadrangle: Tustin, CA

SITE LOCATION MAP

	ITT CANNON	GIS Review: SS
	666 East Dyer Road Santa Ana, CA	CHK'D: SS
ERM	Orange County, California	0349890
Drawn By: SRV-9/10/15	Environmental Resources Management	FIGURE 1

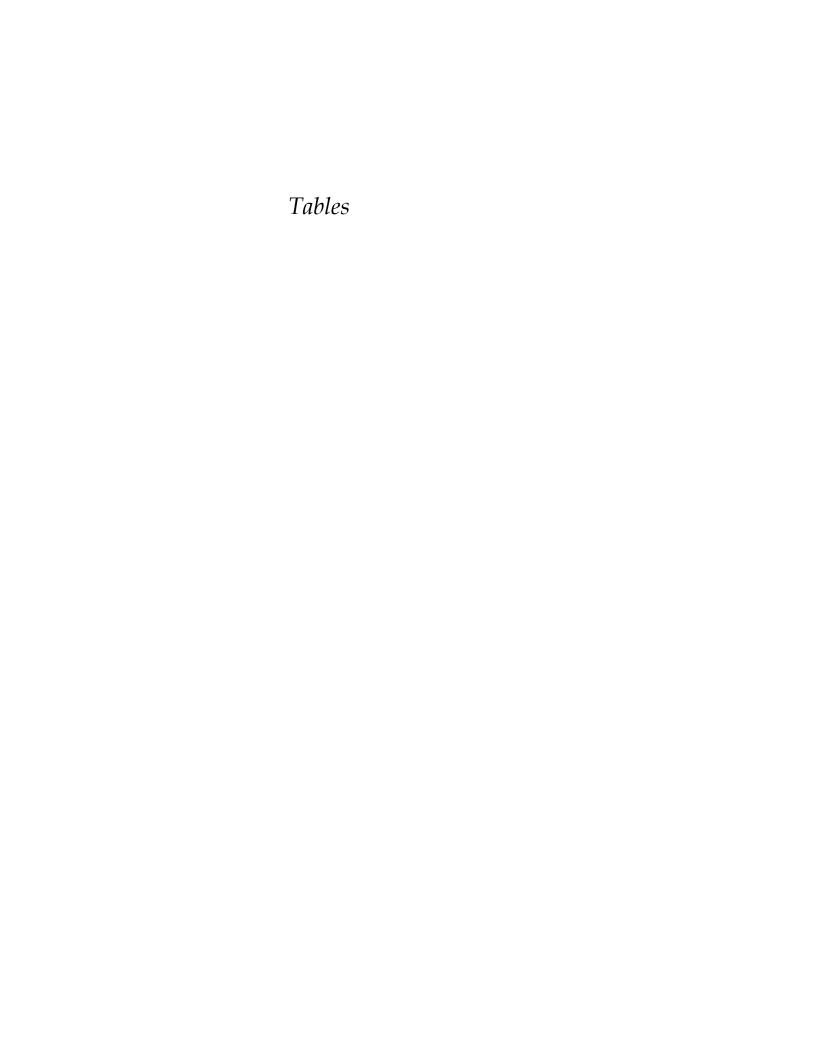


Table 1 Summary of Paint Chip Sample Results ITT Cannon - Santa Ana, CA

-		Analyte	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268		
		Method	SW8082	SW8082	SW8082	SW8082	SW8082	SW8082	SW8082	SW8082	SW8082		
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
Location ID	Sample Date	Sample										Total PCBs	
PC-001	4/28/2016	Type N	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	(mg/kg) <0.025	Comments Blue on material storage door - west building
PC-001 PC-004	4/27/2016	N	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	605	<0.025	<0.025	605	Exterior grey/white/beige on concrete - northeast corner of west building
PC-004-DUP	4/28/2016	FD	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	Exterior white over beige - north side of west building
PC-005	4/27/2016	N	<0.125	<0.125	<0.125	<0.125	4.86	4.1	<0.125	<0.125	<0.125	8.96	Exterior grey on white paint - northeast corner of west building
PC-005-DUP	4/28/2016	FD	<0.125	<0.125	<0.125	<0.125	< 0.125	11.8	<0.125	<0.125	<0.125	11.8	Exterior grey on white paint - northeast corner of west building
PC-006	4/27/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	1.74	2.16	< 0.125	< 0.125	< 0.125	3.90	Exterior white paint on concrete wall - west side of west building
PC-007	4/27/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	Red on bollards on west side of west building
PC-008	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	2.18	< 0.125	1.51	< 0.125	< 0.125	3.69	Gray over blue on wood double door - interior machine shop door
PC-009	4/28/2016	N	< 0.875	< 0.875	< 0.875	< 0.875	22.5	26.3	< 0.875	< 0.875	< 0.875	48.8	Beige on support pole in proto machine shop - west building
PC-010	4/28/2016	N	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	< 0.375	Gray/blue/tan wood door - fiber optics room (west center of west building)
PC-011	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	6.29	6.68	< 0.125	< 0.125	< 0.125	13.0	White on I-beam inside vibration test lab
PC-012	4/28/2016	N	< 0.175	< 0.175	< 0.175	< 0.175	< 0.175	1.63	< 0.175	< 0.175	< 0.175	1.63	White on stairs southwest corner of west building
PC-014	4/28/2016	N	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	Green racks in warehouse - southwest corner of west building
PC-015	4/28/2016	N	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	Red on I-beam on southwest side of west building
PC-016	4/28/2016	N	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	Yellow/blue/black support pole - south side of west building
PC-017	4/28/2016	N N	<0.125 <0.750	< 0.125	<0.125 <0.750	<0.125 <0.750	6.48 < 0.750	3.65	<0.125 <0.750	<0.125 <0.750	<0.125 <0.750	10.1	Red/red on roof truss on south end of west building
PC-018	4/28/2016	N N		<0.750				11.7			<0.750	11.7	Red on fire suppression piping - south side of west building Silver over blue on load leveler off south side of west building
PC-019 PC-020	4/28/2016 4/27/2016	N N	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	<0.125 <5	Grey paint with fibers on piping - roof of west building
PC-021	4/28/2016	N	<0.125	<0.125	<0.125	<0.125	161	<0.125	<0.125	<0.125	<0.125	161	White on sheetrock wall - NW side of Die Cast Building
PC-022	4/28/2016	N	<0.125	<0.125	<0.125	<0.125	399	<0.125	<0.125	<0.125	<0.125	399	White/beige/gray on concrete - NW side of Die Cast Building
DUP-003 (PC-022)	4/28/2016	FD	< 0.250	<0.250	< 0.250	<0.250	250	55.5	26.7	< 0.250	< 0.250	332	White/beige/gray on concrete - NW side of Die Cast Building
PC-023	4/28/2016	N	<0.125	<0.125	<0.125	<0.125	154	52.8	29.3	<0.125	<0.125	236	I-Beam gray/beige/green paint - west side of Die Cast Building
PC-024	4/28/2016	N	< 0.250	<0.250	< 0.250	< 0.250	395	< 0.250	< 0.250	< 0.250	< 0.250	395	Tan/black on roof truss - north side of Die Cast Building
PC-025	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	605	< 0.250	< 0.250	< 0.250	< 0.250	605	Black coating on tan - cross brace on north Die Cast Building
PC-026	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	442	64	< 0.250	< 0.250	< 0.250	506	Tan on electrical trough in west center of Die Cast Building
PC-027	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	181	38.5	< 0.250	< 0.250	< 0.250	220	Tan on pipe in Die Cast Building
PC-028	4/28/2016	N	< 0.500	< 0.500	< 0.500	< 0.500	244	37.6	< 0.500	< 0.500	< 0.500	282	Yellow/black on crane - west side of Die Cast Building
PC-029	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	208	< 0.250	< 0.250	< 0.250	< 0.250	208	Tan over gray on roof truss - south side of Die Cast Building
PC-030	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	172	22.5	< 0.250	< 0.250	< 0.250	195	White/beige/gray on concrete - south side of Die Cast Building
PC-031	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	192	< 0.250	< 0.250	< 0.250	< 0.250	192	White/beige/gray on concrete - Die Cast Building
PC-032	4/28/2016	N	< 0.250	<0.250	<0.250	<0.250	86.3	16.6	< 0.250	<0.250	< 0.250	103	Black dust/tan/black on cross brace in Die Cast Building
PC-033	4/28/2016	N	<0.250	<0.250	<0.250	<0.250	120	<0.250	<0.250	<0.250	<0.250	120	Tan on small pipe - NE side of Die Cast Building
PC-034	4/28/2016	N	<0.250	<0.250	<0.250	<0.250	103	<0.250	< 0.250	<0.250	<0.250	103	Brown on small pipe - NE side of Die Cast Building
PC-036 PC-037	4/28/2016	N N	<0.250 <0.250	<0.250 <0.250	<0.250 <0.250	<0.250 <0.250	<0.250 <0.250	28.9 43.3	<0.250 <0.250	<0.250 <0.250	<0.250 <0.250	28.9 43.3	White on wood in warehouse to north of Die Cast Building in Raw Material Storage Shed
PC-037 PC-038	4/28/2016 4/28/2016	N	<0.125	<0.125	<0.125	<0.125	5.63	7.85	4.46	<0.125	<0.250	43.3 17.9	White/red on roof truss in warehouse to north of Die Cast Building in Raw Material Storage Shed White/red roof truss on west end of warehouse - West building
PC-039	4/28/2016	N	<0.123	<0.123	<0.125	<0.123	5.45	4.68	<0.250	<0.125	<0.125	10.1	Gray/blue/red on small beam in east building
PC-040	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	17.4	20.8	4.65	< 0.250	< 0.250	42.9	White/red on roof truss in east building
PC-041	4/28/2016	N	< 0.100	< 0.100	< 0.100	< 0.100	3.28	< 0.100	< 0.100	< 0.100	< 0.100	3.28	White/red on roof truss in east building
PC-042	4/28/2016	N	<0.250	<0.250	< 0.250	<0.250	12.3	5.22	< 0.250	< 0.250	< 0.250	17.5	White/beige on concrete in NE corner of east building
DUP-004 (PC-042)	4/28/2016	FD	< 0.125	< 0.125	< 0.125	< 0.125	15.9	5.52	< 0.125	< 0.125	< 0.125	21.4	White/beige on concrete in NE corner of east building
PC-043	4/28/2016	N	< 0.025	< 0.025	< 0.025	< 0.025	1.26	0.687	< 0.025	< 0.025	< 0.025	1.95	Blue/black/beige on concrete north side of east building
PC-044	4/28/2016	N	< 0.100	< 0.100	< 0.100	< 0.100	4.12	3.17	< 0.100	< 0.100	< 0.100	7.29	White/tan red on support pole in north offices - east building
PC-045	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	58.6	54	< 0.250	< 0.250	< 0.250	113	Gray/green/yellow/white on support pole in east building
PC-046	4/28/2016	N	< 0.100	< 0.100	< 0.100	< 0.100	9.41	3.36	< 0.100	< 0.100	< 0.100	12.8	Blue over grey on crane support beam - east building
PC-047	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	86.8	45.9	< 0.250	< 0.250	< 0.250	133	White on support pole in east building
PC-048	4/28/2016	N	<0.200	<0.200	<0.200	< 0.200	19	4.26	< 0.200	<0.200	< 0.200	23.3	Yellow marking on floor (4 layers) - east building
DUP-005 (PC-048)	4/28/2016	FD	<0.200	<0.200	<0.200	<0.200	32.8	11.7	<0.200	<0.200	<0.200	44.5	Yellow marking on floor (4 layers) - east building
PC-049	4/28/2016	N	<0.250	<0.250	<0.250	<0.250	22	<0.250	< 0.250	<0.250	<0.250	22.0	Grey over blue on metal door in west side of east building
PC-050	4/28/2016	N	<0.250	<0.250	<0.250	<0.250	9.7	3.8	<0.250	<0.250	<0.250	13.5	Grey/white/blue/yellow/red on support pole in east building
DUP-006 (PC-050)	4/28/2016	FD	< 0.125	< 0.125	<0.125	< 0.125	<0.125	11.1	< 0.125	<0.125	<0.125	11.1	Grey/white/blue/yellow/red on support pole in east building White/beige/red/blue on I beam in east building
PC-051 PC-052	4/28/2016 4/28/2016	N N	<0.250 <0.050	<0.250 <0.050	<0.250 <0.050	<0.250 <0.050	22.8 1.62	10.9 0.952	<0.250 <0.050	<0.250 <0.050	<0.250 <0.050	33.7 2.57	White/beige/red/blue on I-beam in east building Grey over blue over white on concrete - exterior south end of east building
PC-052 PC-053	4/28/2016	N N	<0.050	<0.050	<0.050	<0.050	0.8	0.952	<0.050	<0.050	<0.050	1.55	White over beige - exterior wall south side of east building
PC-054	4/28/2016	N	<0.050	<0.050	<0.050	<0.050	4.31	2.18	<0.050	<0.050	<0.050	6.49	Gray/tan/blue on beam in east building
PC-055	4/28/2016	N	<0.250	<0.250	<0.250	<0.250	11.6	7.38	<0.250	<0.250	<0.250	19.0	Beige/white/yellow/blue on concrete wall in east building
PC-056	4/28/2016	N	< 0.250	< 0.250	< 0.250	< 0.250	52	55.6	< 0.250	< 0.250	< 0.250	108	Gray/brown/red on support pole in east building
1 2-000	1, 20, 2010		-0.200	-5.250	-5.250	-0.200	32	55.0	-5.250	-5.256	-5.250	100	are y are and a promption for an east outland

Note

< = Compound not detected. Reportable detection limit shown.

Empty cells = Not analyzed.

NS = No Standard.

Units are in mg/kg = milligrams per kilogram

Shaded values indicate concentrations above the USEPA High Occupancy Criteria (1.0 mg/kg)
Shaded values indicate concentrations above the TSCA Applicability Criteria (50.0 mg/kg)

N = Normal Environmental Sample

FD = Field Duplicate Sample

USEPA = United States Environmental Protection Agency

TSCA = Toxic Substances Control Act

PC = Paint Chip Sample

Table 2 Summary of Wipe Sample Results ITT Cannon - Santa Ana, CA

		Method	Aroclor 1016 SW8082 ug/100cm ²	Aroclor 1221 SW8082 ug/100cm ²	Aroclor 1232 SW8082 ug/100cm ²	Aroclor 1242 SW8082 ug/100cm ²	Aroclor 1248 SW8082 ug/100cm ²	Aroclor 1254 SW8082 ug/100cm ²	Aroclor 1260 SW8082 ug/100cm ²	Aroclor 1262 SW8082 ug/100cm ²	Aroclor 1268 SW8082 ug/100cm ²		
Location	Sample	Sample										Total PCBs	
ID	Date	Type										(ug/100cm ²)	Comments
WP-001	4/28/2016	N	< 0.05	< 0.05	< 0.05	< 0.05	3.05	0.939	< 0.05	< 0.05	< 0.05	3.99	Ceiling - north side of Die Cast Building
WP-002	4/28/2016	N	< 0.10	< 0.10	< 0.10	< 0.10	59.6	14.9	< 0.10	< 0.10	< 0.10	74.5	Ceiling fan in Die Cast Building
WP-003	4/28/2016	N	< 0.05	< 0.05	< 0.05	< 0.05	2.1	0.623	< 0.05	< 0.05	< 0.05	2.72	Ceiling - south side of Die Cast Building
WP-004	4/28/2016	N	< 0.05	< 0.05	< 0.05	< 0.05	0.592	0.159	< 0.05	< 0.05	< 0.05	0.75	Vent on west side of Die Cast Building
WP-005	4/28/2016	N	< 0.05	< 0.05	< 0.05	< 0.05	5.82	< 0.05	< 0.05	< 0.05	< 0.05	5.82	Grey beam with black staining on east side of Die Cast Building
WP-006	4/28/2016	N	< 0.05	< 0.05	< 0.05	< 0.05	22.1	< 0.05	< 0.05	< 0.05	< 0.05	22.1	White with oil splatter - east side of Die Cast Building

< = Compound not detected. Reportable detection limit shown.

Empty cells = Not analyzed.

NS = No Standard.

Units are in ug/100cm² = micrograms per 100 square centimeters

Shaded values indicate concentrations above the USEPA High Occupancy Criteria (10 ug/100cm2) Shaded values indicate concentrations above the USEPA Low Occupancy Criteria (100 ug/100cm2)

N = Normal Environmental Sample

FD = Field Duplicate Sample

USEPA = United States Environmental Protection Agency

TSCA = Toxic Substances Control Act

WP = Wipe Sample

Table 3 Summary of Bulk Material Sample Results ITT Cannon - Santa Ana, CA

		Analyte Method Unit	Aroclor 1016 SW8082 mg/kg	Aroclor 1221 SW8082 mg/kg	Aroclor 1232 SW8082 mg/kg	Aroclor 1242 SW8082 mg/kg	Aroclor 1248 SW8082 mg/kg	Aroclor 1254 SW8082 mg/kg	Aroclor 1260 SW8082 mg/kg	Aroclor 1262 SW8082 mg/kg	Aroclor 1268 SW8082 mg/kg		
Location ID	Sample Date	Sample Type										Total PCBs (mg/kg)	Comments
BM-001	4/28/2016	N	< 0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	Black oily material on floor in grind room (west building)
BM-002	4/27/2016	N	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	Tar on roof north side of west building
BM-003	4/28/2016	N	< 0.050	< 0.050	< 0.050	< 0.050	6.68	< 0.050	< 0.050	< 0.050	< 0.050	6.68	Dust on beam of crane - west side of Die Cast Building
BM-004	4/28/2016	N	< 0.050	< 0.050	< 0.050	< 0.050	10.7	< 0.050	< 0.050	< 0.050	< 0.050	10.7	Dust on electric trough - center of Die Cast Building
BM-005	4/28/2016	N	< 0.050	< 0.050	< 0.050	< 0.050	9.3	< 0.050	< 0.050	< 0.050	< 0.050	9.30	Dust on cooling water pipe - south side of Die Cast Building
BM-006	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	30.0	< 0.125	< 0.125	< 0.125	< 0.125	30.0	Dust on 3rd light down center from north entrance of Die Cast Building

< = Compound not detected. Reportable detection limit shown.

Empty cells = Not analyzed.

NS = No Standard.

Units are in mg/kg = milligrams per kilogram

Shaded values indicate concentrations above the USEPA High Occupancy Criteria $(1.0\ mg/kg)$. Shaded values indicate concentrations above the TSCA Applicability Criteria $(50.0\ mg/kg)$.

N = Normal Environmental Sample

FD = Field Duplicate Sample

USEPA = United States Environmental Protection Agency

TSCA = Toxic Substances Control Act

BM = Bulk Materials Sample

Table 4 Summary of Caulking Sample Results ITT Cannon - Santa Ana, CA

		Analyte	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268		
		Method	SW8082										
		Unit	mg/kg										
		Sample										Total PCBs	
Location ID	Sample Date	Type										(mg/kg)	Comments
CK-001	4/27/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	165,000	< 0.125	< 0.125	165,000	Grey painted window caulk - NE corner of west building
CK-002	4/27/2016	N	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	8.15	< 0.025	< 0.025	8.15	Gray caulk on slider door - NW corner of west building
CK-003	4/27/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	79.7	< 0.125	< 0.125	< 0.125	79.7	White window putty on NW side of west building - exterior
CK-004	4/27/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	98.7	< 0.125	< 0.125	< 0.125	< 0.125	98.7	Caulking at ground levele where wall meets sidewalk - west building
CK-005	4/27/2016	N	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	1,190	< 0.025	< 0.025	1,190	Grey window caulk on east side of west building - exterior
CK-006	4/27/2016	N	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	237,000	< 0.025	< 0.025	< 0.025	237,000	Black weather stripping - NE corner of east building (same window as CK-001)
CK-007	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	90.6	44.4	< 0.125	< 0.125	< 0.125	135	Expansion joint caulk on north side of Die Cast Building in east building
CK-008	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	15.8	7.3	< 0.125	< 0.125	< 0.125	23.1	Expansion joint caulk on NW side of east building
CK-009	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	3.15	< 0.125	< 0.125	3.15	Gray glazing on NE side of east building
DUP-001 (CK-009)	4/28/2016	FD	< 0.125	< 0.125	< 0.125	< 0.125	105	< 0.125	< 0.125	< 0.125	< 0.125	105	Gray glazing on NE of east building
CK-010	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	2.47	< 0.125	5.7	< 0.125	< 0.125	8.17	Gray glazing on north side of east building
CK-011	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	1.96	2.57	< 0.125	< 0.125	< 0.125	4.53	Caulking in white painted brick on north side of east building
CK-012	4/28/2016	N	< 0.125	< 0.125	< 0.125	< 0.125	55,300	29,100	< 0.125	< 0.125	< 0.125	84,400	Expansion joint caulking - gray with white paint - east building
CK-013	4/28/2016	N	<1.250	<1.250	<1.250	<1.250	14.9	13.5	<1.250	<1.250	<1.250	28.4	Expansion joint caulking - gray paint on east wall of east building

< = Compound not detected. Reportable detection limit shown.

Empty cells = Not analyzed.

NS = No Standard.

Units are in mg/kg = milligrams per kilogram

Shaded values indicate concentrations above the USEPA High Occupancy Criteria (1.0 mg/kg)

Shaded values indicate concentrations above the TSCA Applicability Criteria (50.0 mg/kg)

N = Normal Environmental Sample

FD = Field Duplicate Sample

USEPA = United States Environmental Protection Agency

TSCA = Toxic Substances Control Act

CK = Caulking Sample

Table 5 Summary of Concrete Sample Results ITT Cannon - Santa Ana, CA

			Analyte	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268		
			Method	SW8082										
			Unit	mg/kg										
	Sample	Sample											Total PCBs	
Location ID	Date	Type	Depth (inches)										(mg/kg)	Comments
CC-001	4/28/2016	N	0-0.25	< 0.025	< 0.025	< 0.025	< 0.025	22.9	6	< 0.025	< 0.025	< 0.025	28.9	Northwest Die Cast Building ~4 feet from floor
CC-DUP-001	4/28/2016	FD	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	24.9	6.46	< 0.125	< 0.125	< 0.125	31.4	Northwest Die Cast Building ~4 feet from floor
CC-002	4/28/2016	N	0-0.25	< 0.025	< 0.025	< 0.025	< 0.025	52.6	16.3	< 0.025	< 0.025	< 0.025	68.9	West central Die Cast Building ~4 feet from floor
CC-003	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	5.77	2.14	< 0.125	< 0.125	< 0.125	7.91	Southwest Die Cast Building ~4 feet from floor
CC-004	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	6.81	2,21	< 0.125	< 0.125	< 0.125	9.02	South Die Cast Building ~4 feet from floor
CC-005	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	18.3	5.21	< 0.125	< 0.125	< 0.125	23.5	Southeast Die Cast Building ~1 foot from floor
CC-006	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	4.43	1.15	< 0.125	< 0.125	< 0.125	5.58	East central Die Cast Building ~7 feet from floor
CC-007	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	30.1	12.1	< 0.125	< 0.125	< 0.125	42.2	Northeast Die Cast Building ~1 foot from floor
CC-008	4/28/2016	N	0-0.25	< 0.125	< 0.125	< 0.125	< 0.125	5.6	2.04	< 0.125	< 0.125	< 0.125	7.64	North Die Cast Building ~4 feet from floor

< = Compound not detected. Reportable detection limit shown.

Empty cells = Not analyzed.

NS = No Standard.

Units are in mg/kg = milligrams per kilogram

Shaded values indicate concentrations above the USEPA High Occupancy Criteria (1.0 mg/kg) Shaded values indicate concentrations above the TSCA Applicability Criteria (50.0 mg/kg)

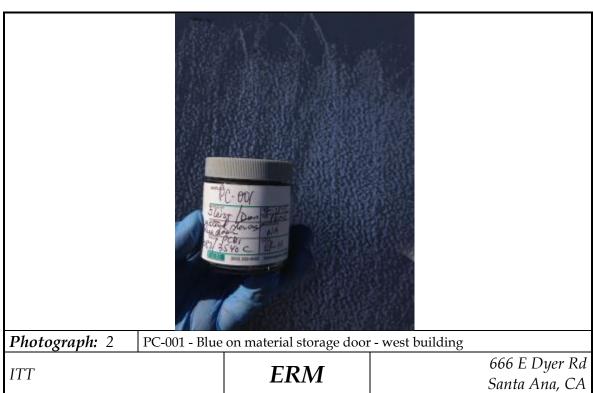
N = Normal Environmental Sample

FD = Field Duplicate Sample

USEPA = United States Environmental Protection Agency

TSCA = Toxic Substances Control Act

CC = Concrete Sample

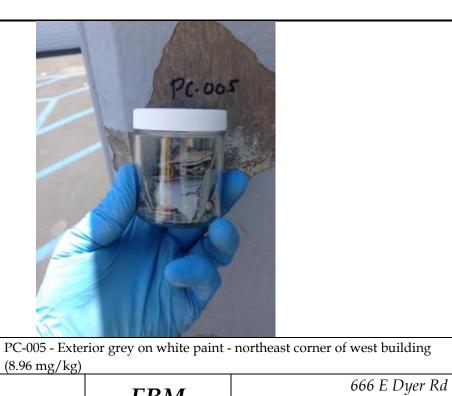

Appendix A
Photologs of Sample Locations

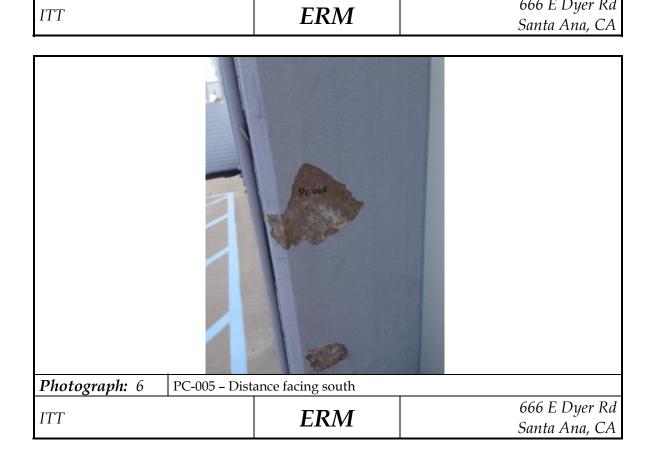
ERM West, Inc.

ITT Santa Ana PCB Sampling 666 E Dyer Rd, Santa Ana, CA Paint Chip Sample Photolog

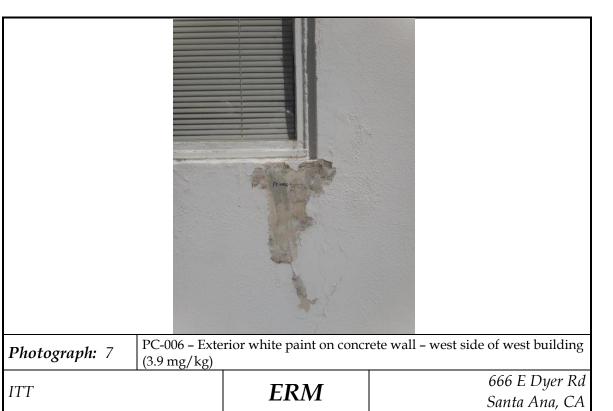
Photograph: 3

PC-004 - Exterior grey/white/beige on concrete - northeast corner of west building


ITT ERM 666 E Dyer Rd Santa Ana, CA



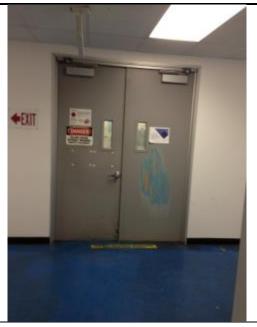
Photograph: 4


PC-004 - Exterior grey/white/beige on concrete - northeast corner of west building

ITT ERM 666 E Dyer Rd Santa Ana, CA

Photograph: 5

Photograph: 9	PC-007 – Red	on bollards west side of	west building	(<0.125 mg/kg)
ITT		$\Gamma D M$		666 E Dyer Rd
11.1		ERM		Santa Ana, CA


Photograph: 10 PC-007 - Distance facing east

ITT ERM 666 E Dyer Rd
Santa Ana, CA

Photograph: 11 PC-008 - Gray over blue on wood double door - interior machine shop door (3.69 mg/kg)

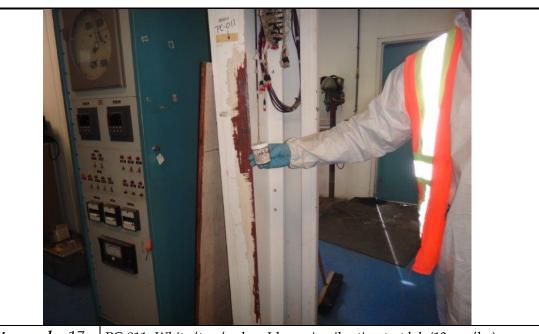
ITT ERM 666 E Dyer Rd Santa Ana, CA

Photograph: 12 PC-008 - Distance facing north

	DC 000 D:		
Photograph: 13	(48.8 mg/kg)		to machine shop – west building
ırr		rdy.	666 E Dyer Rd
ITT		ERM	666 E Dyer Rd Santa Ana, CA

Photograph: 14 PC-009 - Distance facing

ITT ERM 666 E Dyer Rd Santa Ana, CA



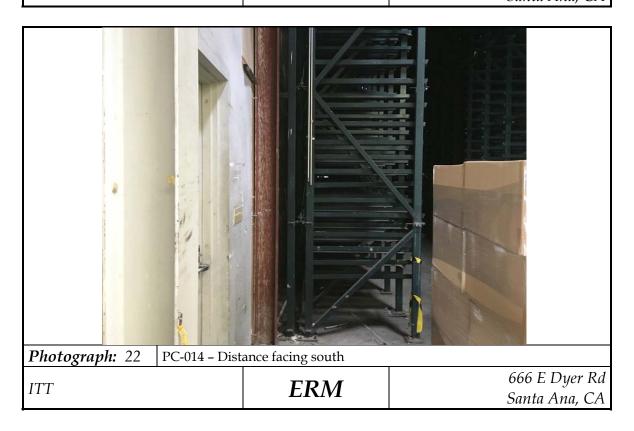
Photograph: 15 PC-010 - Gray/blue/tan wood door - fiber optics room west center of west building (<0.375 mg/kg)

ITT **ERM** 666 E Dyer Rd Santa Ana, CA

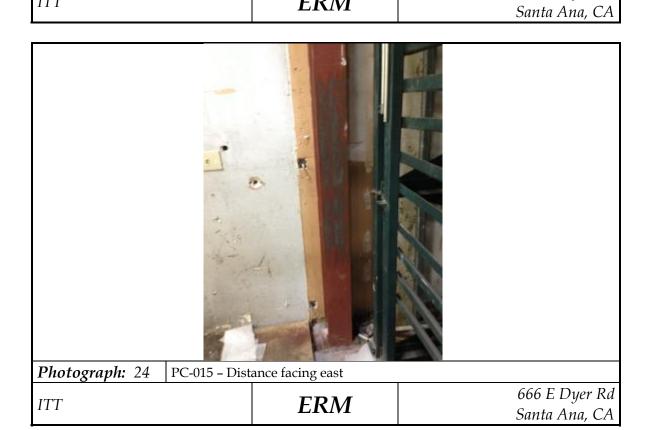
Photograph: 16 PC-010 – Distance facing south

Photograph: 17 PC-011- White/tan/red on I-beam in vibration test lab (13 mg/kg)

ITT ERM 666 E Dyer Rd
Santa Ana, CA



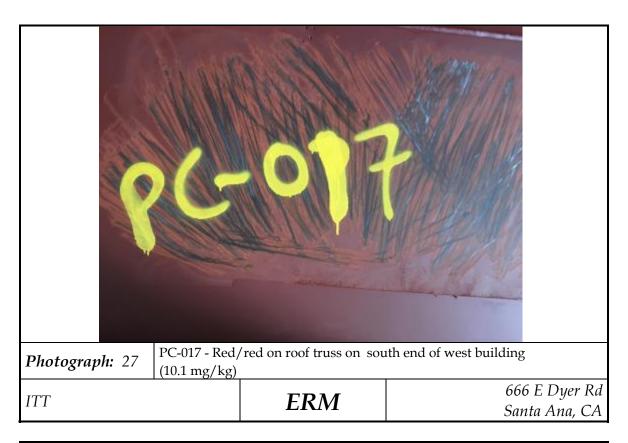
Photograph: 18 PC-011 - Distance facing west



	DC 014 C	1 1 1	1 (400 (1)
Photograph: 21	PC-014 – Gree picture	en racks in southwest cor	ner warehouse - (<1.00 mg/kg) - no
ITT		ЕДМ	666 E Dyer Rd Santa Ana, CA
111		ERM	Santa Ana, CA

Photograph: 23

ITT



Photograph: 25 | PC-016 - Yellow/blue/black support pole - south side of west building (<0.05 mg/kg)

ITT ERM 666 E Dyer Rd Santa Ana, CA

Photograph: 26 PC-016 - Distance facing east

<i>Photograph:</i> 28 PC-017 - No	distance photo	
ITT	ERM	666 E Dyer Rd
111	LIMI	Santa Ana, CA

Photograph: 29 PC-018 - Red on fire suppression piping - south side of west building (11.7 mg/kg)

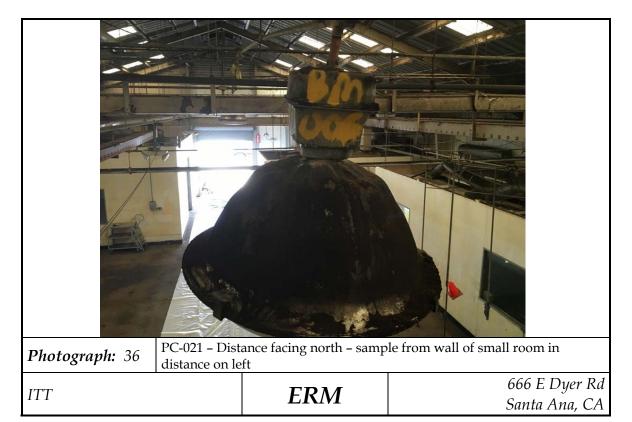
ITT ERM 666 E Dyer Rd Santa Ana, CA

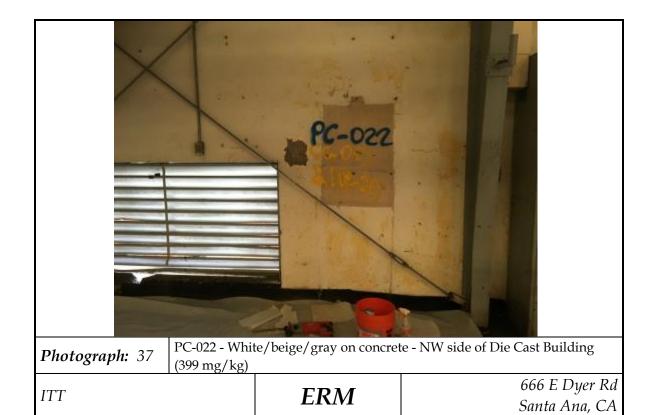
Photograph: 30 PC-018 - Distance facing north

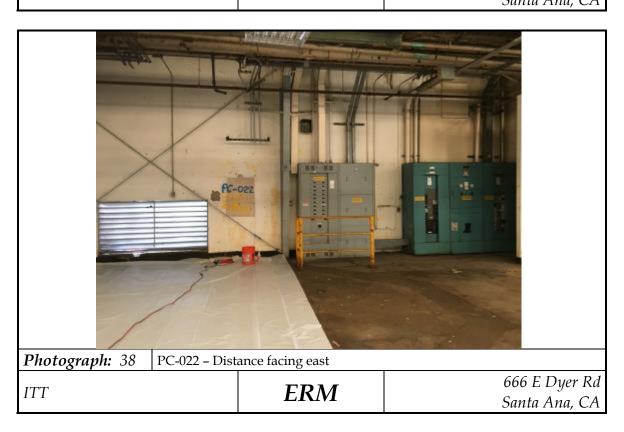
Photograph: 31 PC-019 - Silver over blue on load leveler off south side of west building (<0.125 mg/kg)

ITT ERM 666 E Dyer Rd Santa Ana, CA

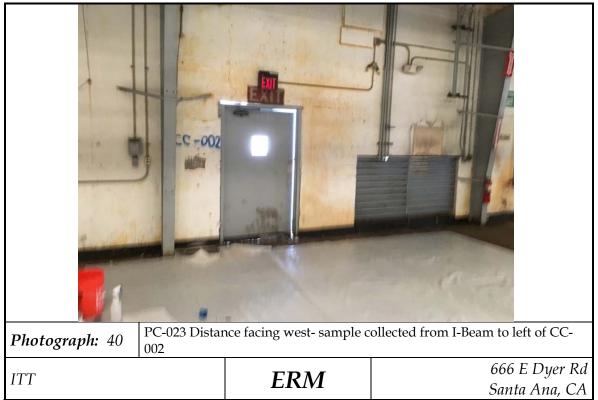
Photograph: 32 PC-019 - Distance facing east

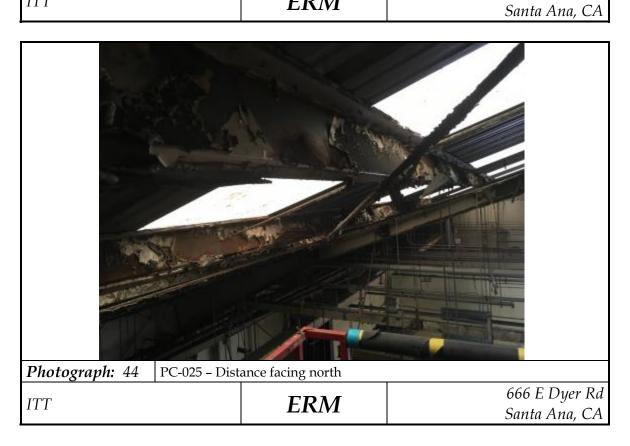


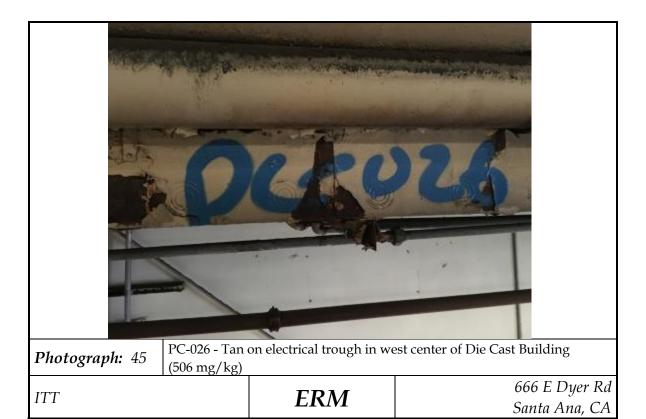

666 E Dyer Rd **ERM** ITT Santa Ana, CA

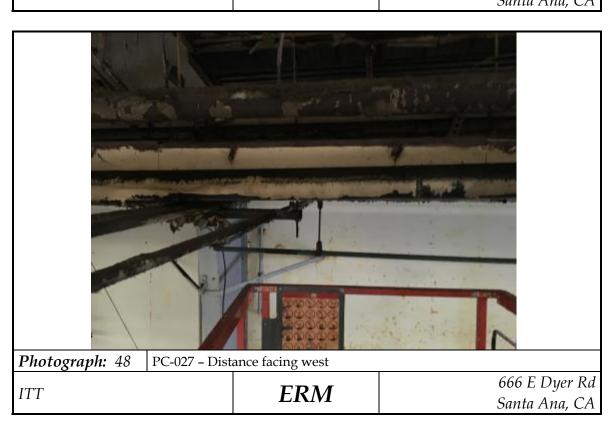


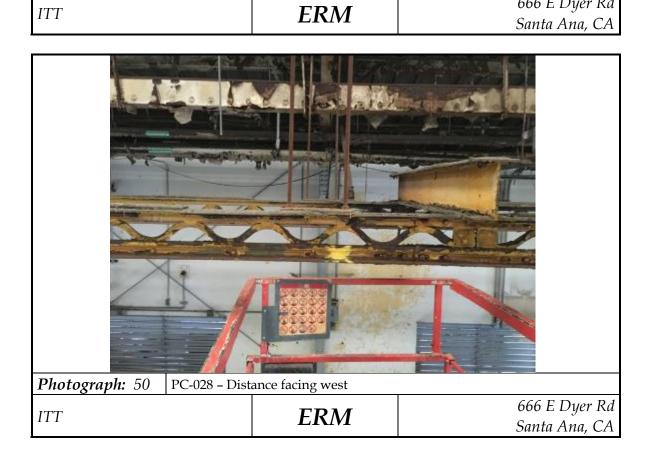
666 E Dyer Rd **ERM** ITTSanta Ana, CA

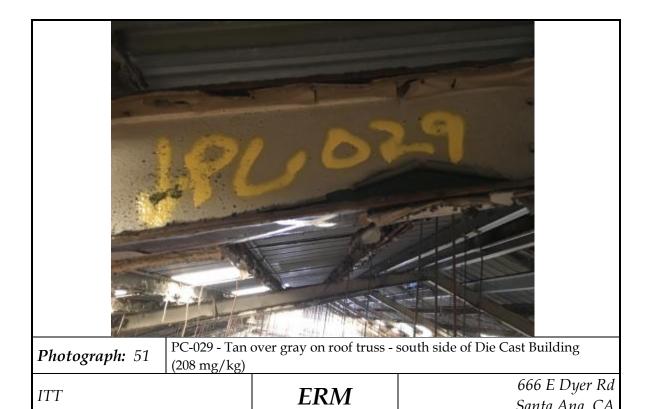

Photograph: 35	PC-021 - Whi (161 mg/kg) -		N side of Die Cast Building
ITT	10/0/		666 E Dyer Rd
111		ERM	Santa Ana, CA

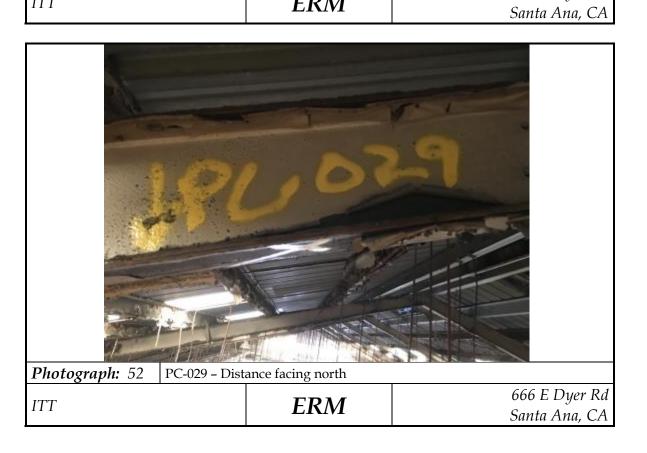

Photograph: 39	PC-023 – I-Bea (236 mg/kg) -		NW side of Die Cast Building
	(230 Hig/ kg) -		666 E Dyer Rd
ITT		ERM	Santa Ana, CA

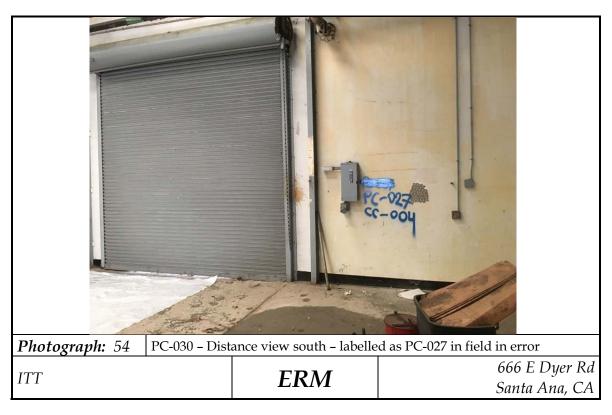




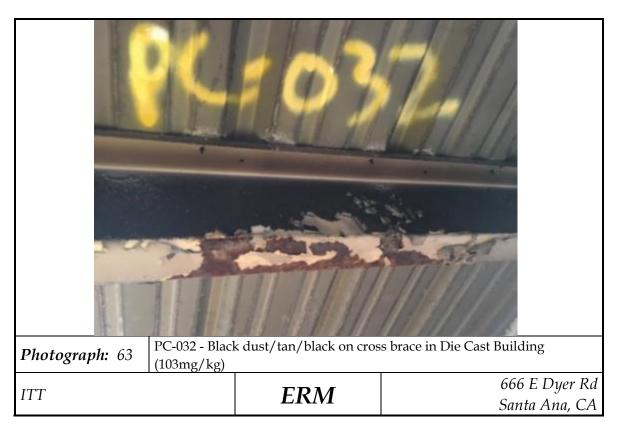


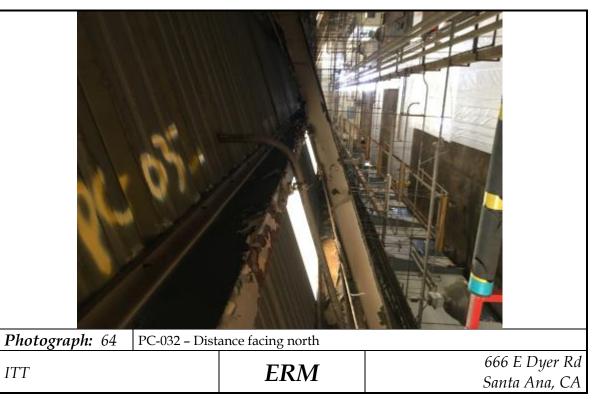

hotograph: 46	PC-026 - No distance photo	



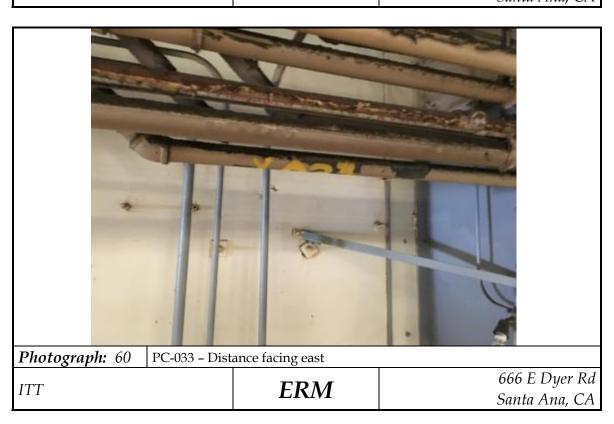


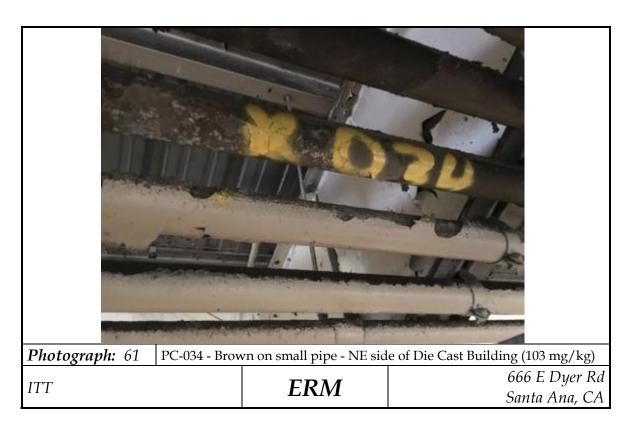
Photograph: 53	PC-030 - Whi Building (195	te/gray/beige on concre mg/kg) - no photo	te wall south side of Die Cast
ITT		ERM	666 E Dyer Rd
111		LIXIVI	Santa Ana, CA

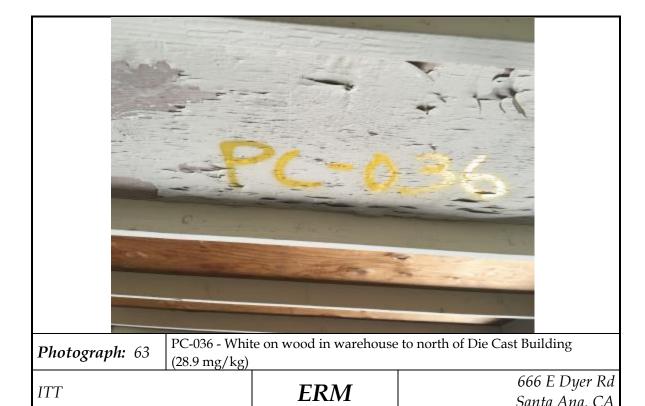


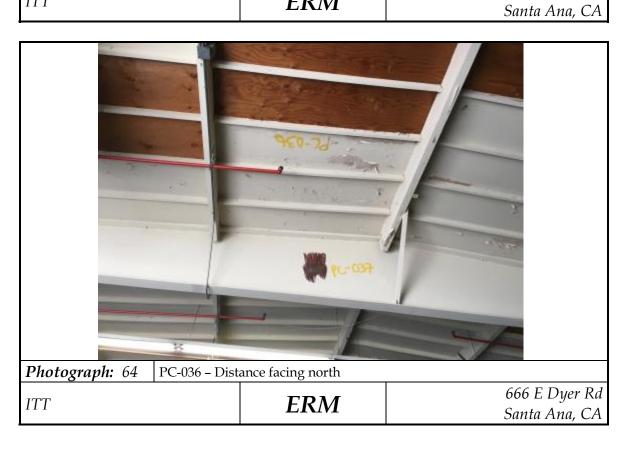

 Photograph: 55
 PC-031 - White/beige/gray on concrete - Die Cast Building (192 mg/kg)

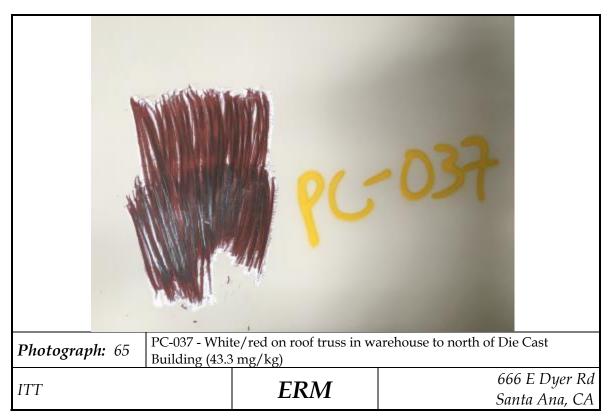
 ITT
 ERM
 666 E Dyer Rd Santa Ana, CA

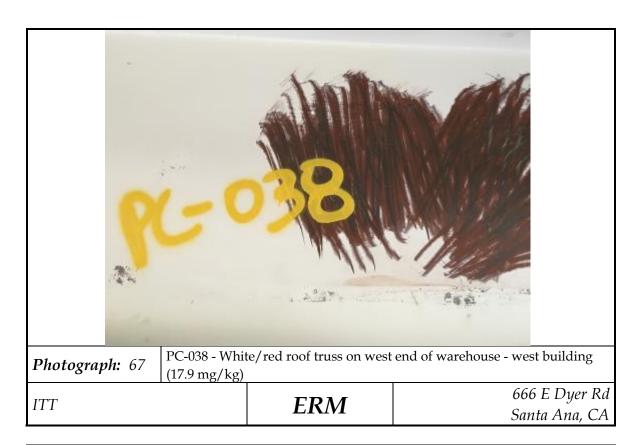



Photograph: 56 PC-031 - White/beige/gray on concrete - Die Cast Building

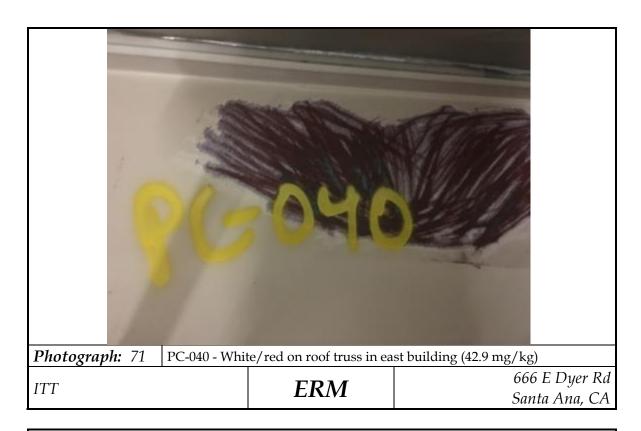




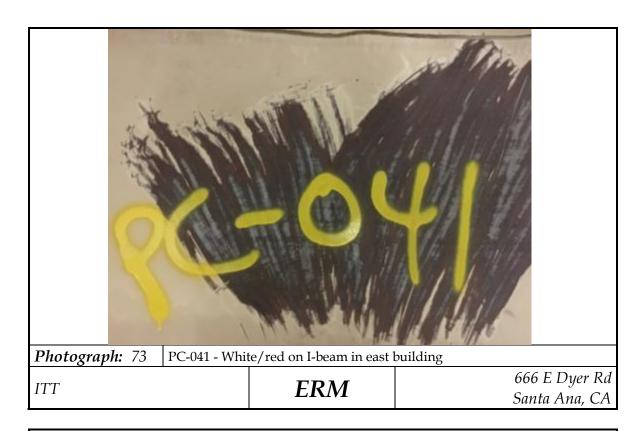


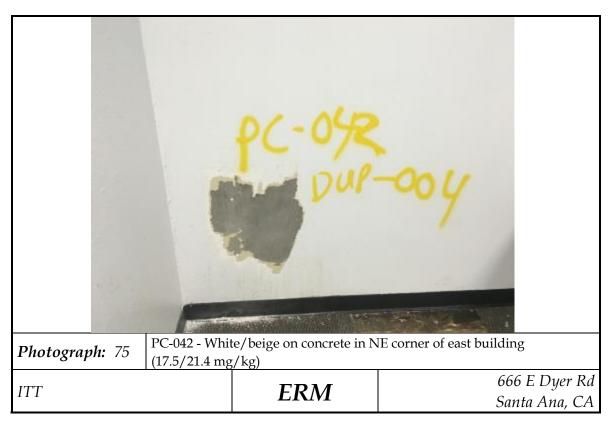

	PC-034 – no distance photo	666 E Duer Rd
ITT	ERM	666 E Dyer Rd Santa Ana, CA

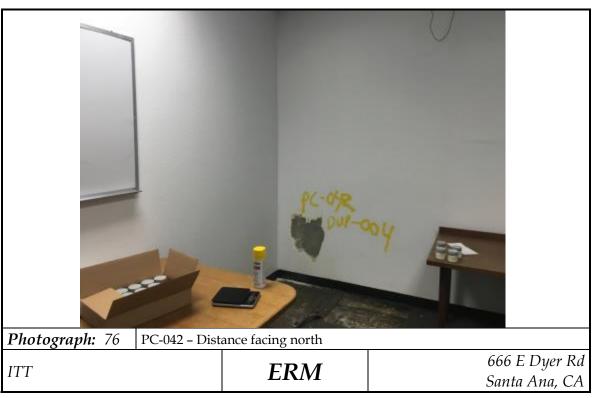
Photograph: 68	PC-038 - No o	distance photo	
ITT		ERM	666 E Dyer Rd Santa Ana, CA
			Santa Ana, CA

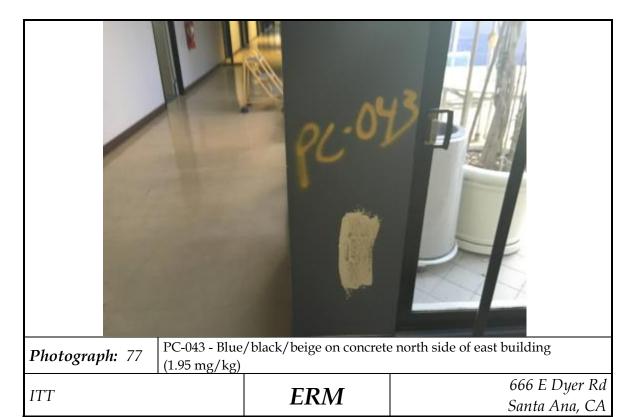


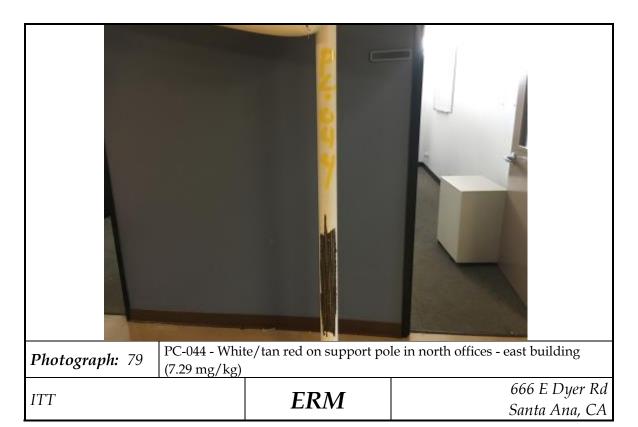
Photograph: 69 PC-039 - Gray/blue/red on small beam in east building (10.1 mg/kg)

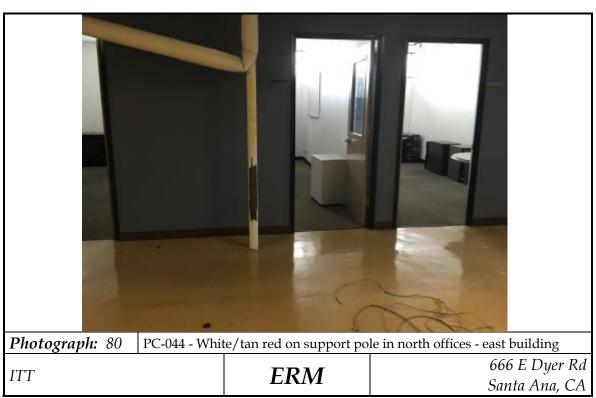

ITT ERM 666 E Dyer Rd Santa Ana, CA

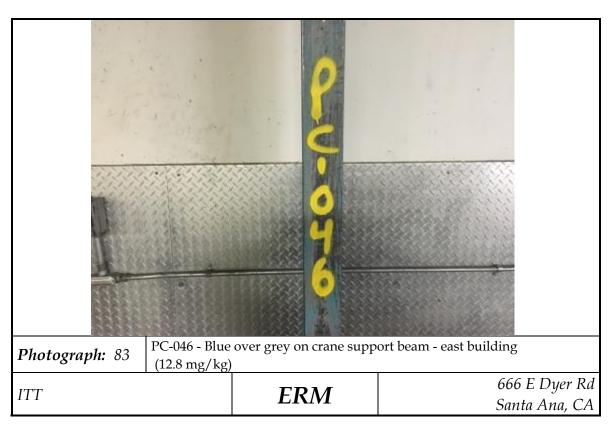

Photograph: 70 PC-039 – Distance facing north

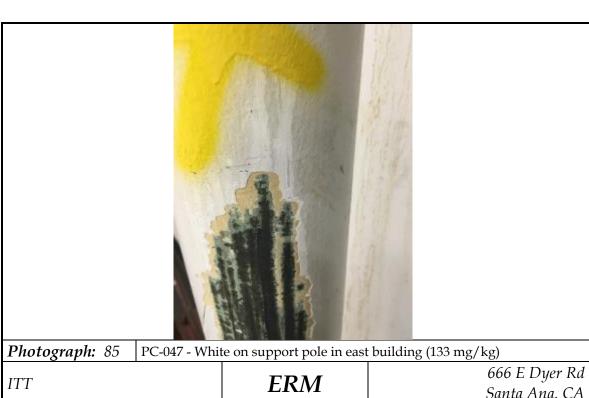


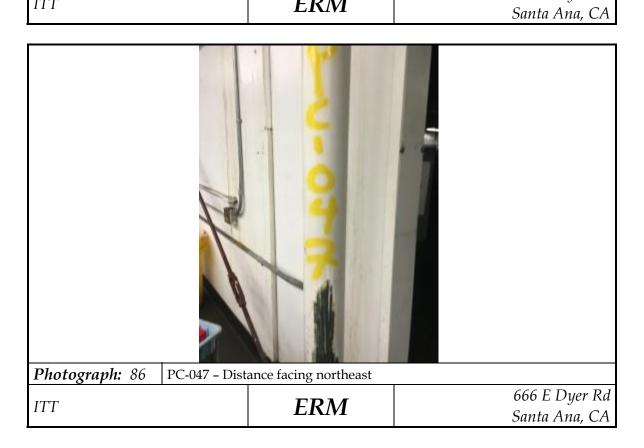

Photograph: 72 PC-040 - No	distance photo	
ITT	ERM	666 E Dyer Rd Santa Ana, CA
	LIMI	Santa Ana, CA

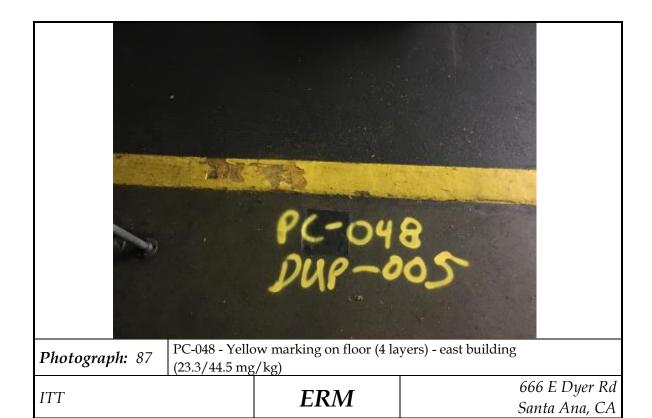

Plata and 74 PC 041 N	1	
Photograph: 74 PC-041 - No o	distance photo ERM	666 E Dyer Rd Santa Ana, CA
1111	LIXIVI	Santa Ana, CA

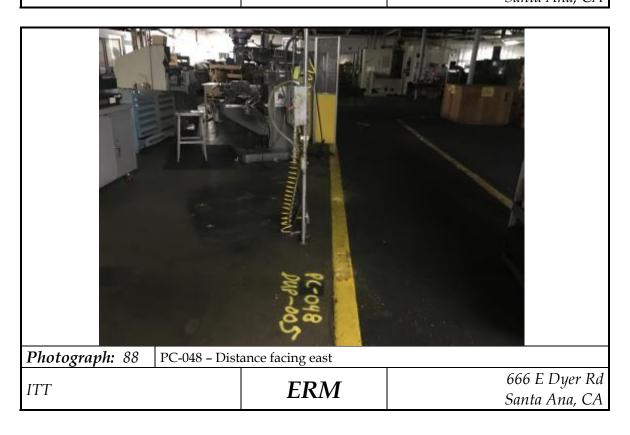


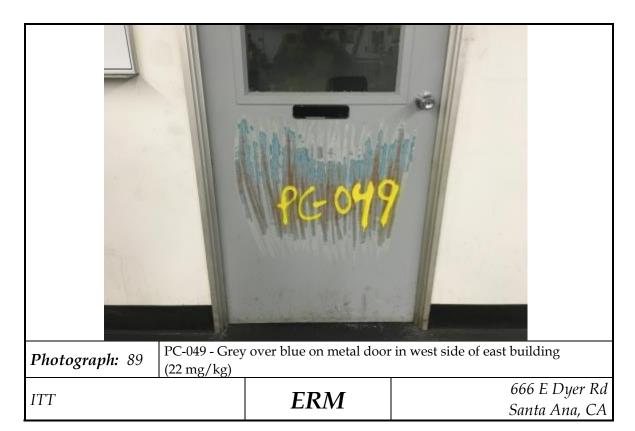


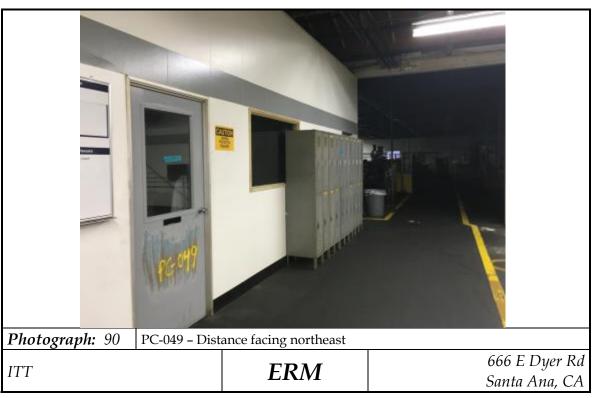





Dhotograph, 01	PC-045 - Gray	/green/yellow/white o	on support pole East building
Photograph: 81	(113 mg/kg) -	no photo	CCCED D1
ITT		ERM	666 E Dyer Rd
			Santa Ana. C.A.I
			Santa Ana, CA
Photograph: 82	PC-045 - No d		Santa Ana, CA
Photograph: 82	PC-045 - No d		Santa Ana, CA 666 E Dyer Rd Santa Ana, CA




Photograph: 84	PC-046 - No o	distance photo	666 E Dyer Rd Santa Ana, CA

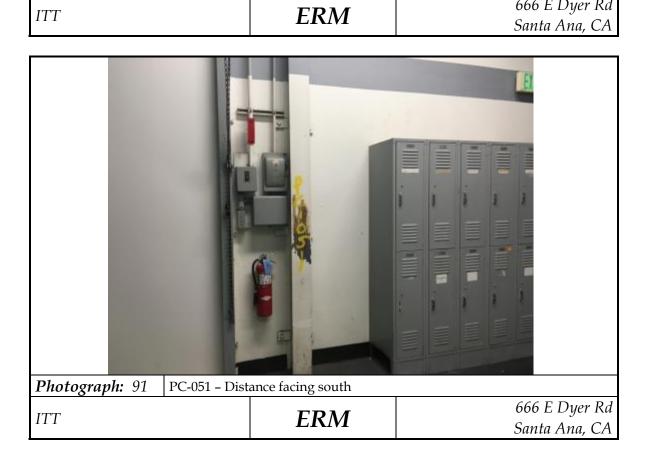


Photograph: 91

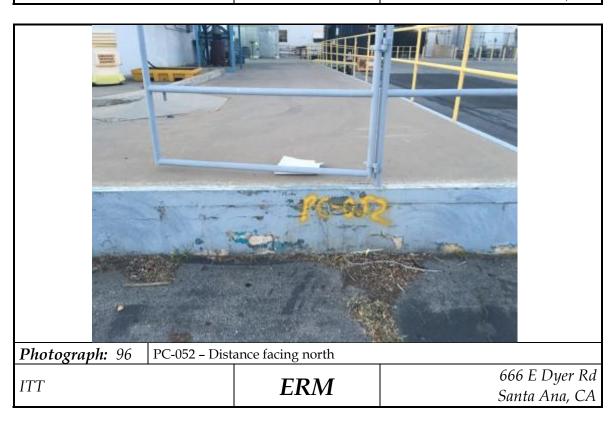
PC-050 - Grey/white/blue/yellow/red on support pole in east building (13.5/11.1 mg/kg)

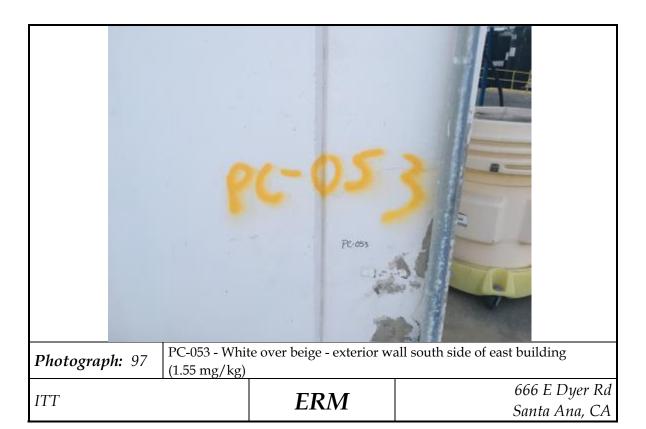
ITT ERM 666 E Dyer Rd Santa Ana, CA

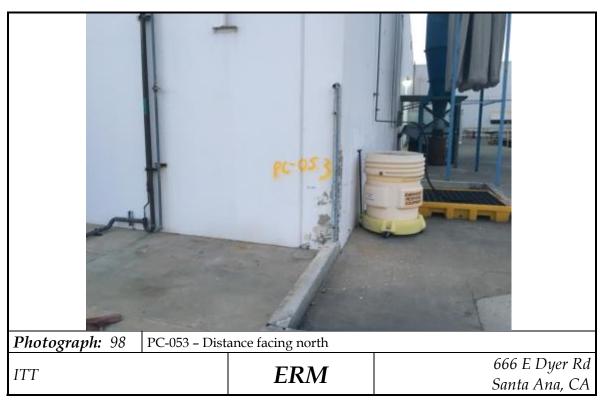
Photograph: 92

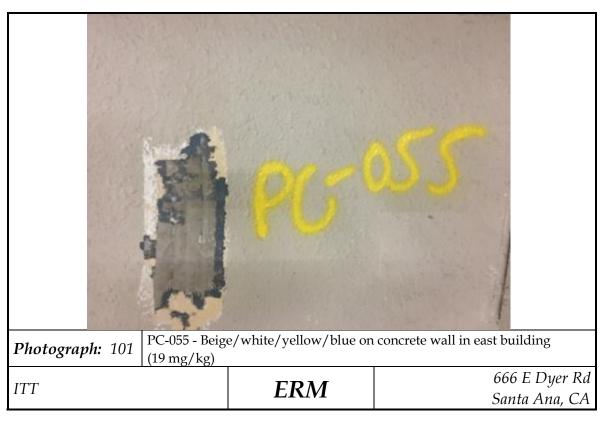

PC-050 - Distance facing east

ITT


ERM


666 E Dyer Rd Santa Ana, CA




Photograph: 99 PC-054 - Gray/tan/blue on beam in east building (6.49 mg/kg)

ITT ERM 666 E Dyer Rd Santa Ana, CA

Photograph: 100 PC-054 - Distance facing east

ITT ERM 666 E Dyer Rd Santa Ana, CA

ERM

Santa Ana, CA

ITT

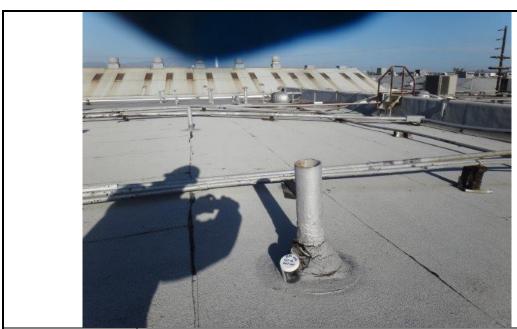
ERM West, Inc.

ITT Santa Ana PCB Sampling 666 E Dyer Rd, Santa Ana, CA **Building Materials Photolog**

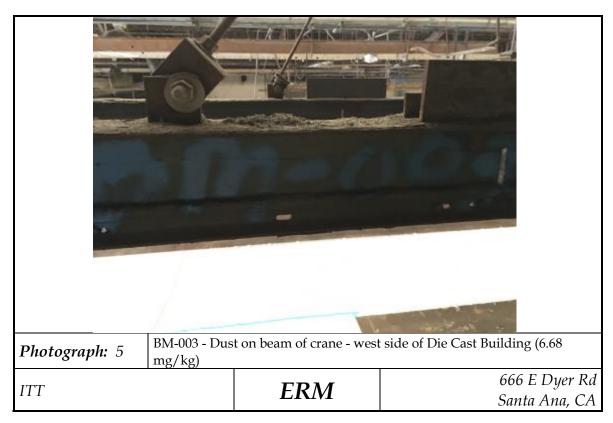
Photograph: 1

BM-001 - Black oily material on floor in grind room - west building (<0.12<u>5 mg/kg</u>)

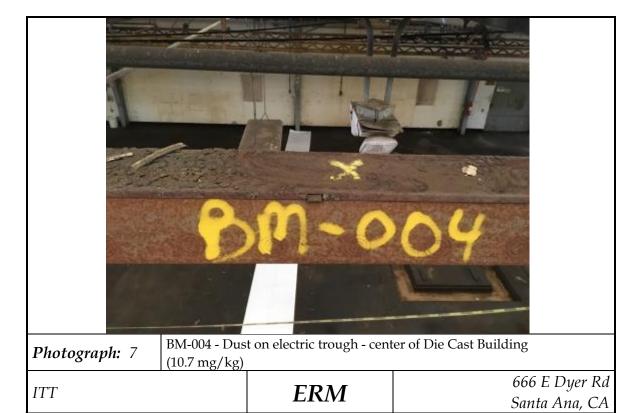
666 E Dyer Rd **ERM** ITTSanta Ana, CA


Photograph: 2 BM-001 -

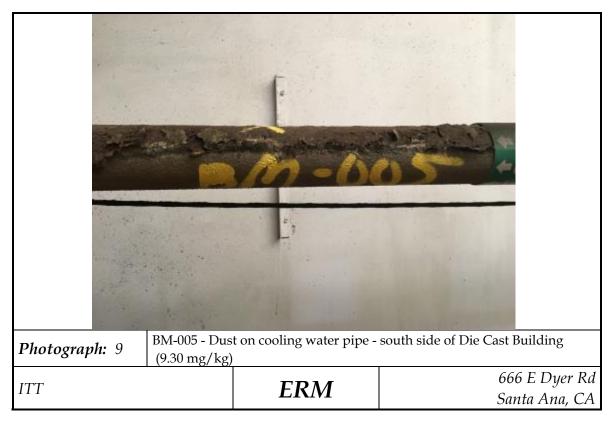
666 E Dyer Rd **ERM** ITTSanta Ana, CA


Photograph: 3 BM-002 – Tar on roof north side of west building (<5 mg/kg)

666 E Dyer Rd **ERM** ITTSanta Ana, CA

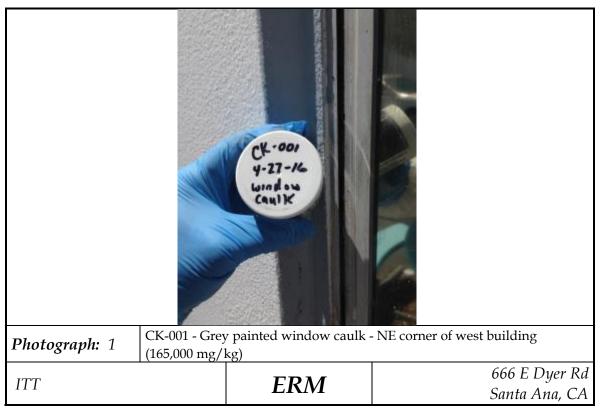


Photograph: 4 BM-002 Distance facing southeast

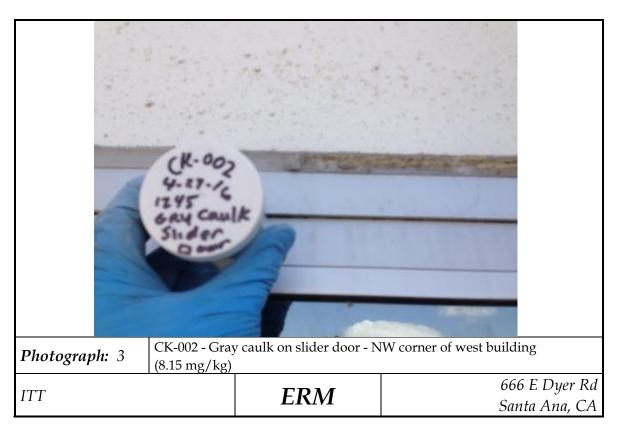

666 E Dyer Rd **ERM** ITTSanta Ana, CA

Photograph: 11

666 E Dyer Rd **ERM** ITTSanta Ana, CA

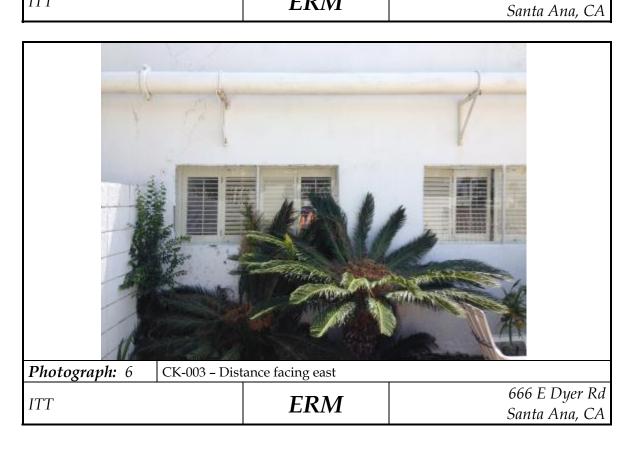

BM-006 - Distance facing north Photograph: 12

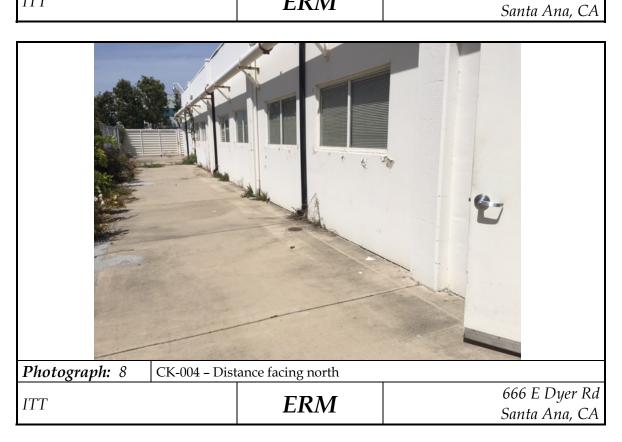
666 E Dyer Rd **ERM** ITTSanta Ana, CA

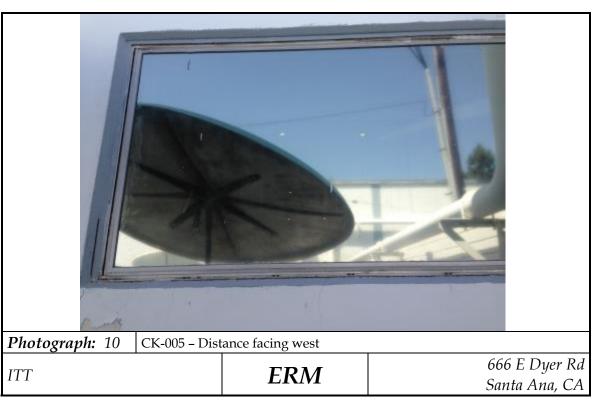

ERM West, Inc.

ITT Santa Ana PCB Sampling 666 E Dyer Rd, Santa Ana, CA Caulking Sample Photolog

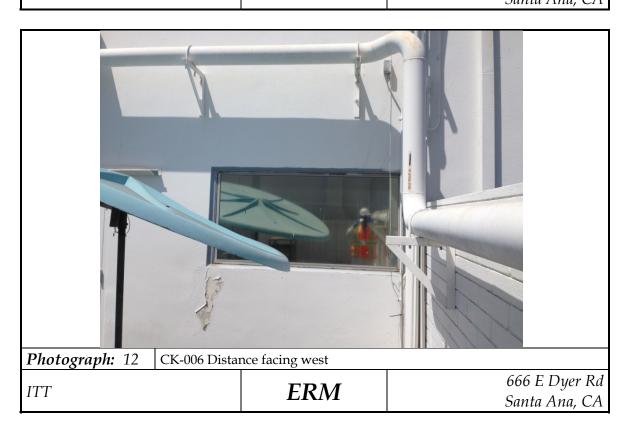


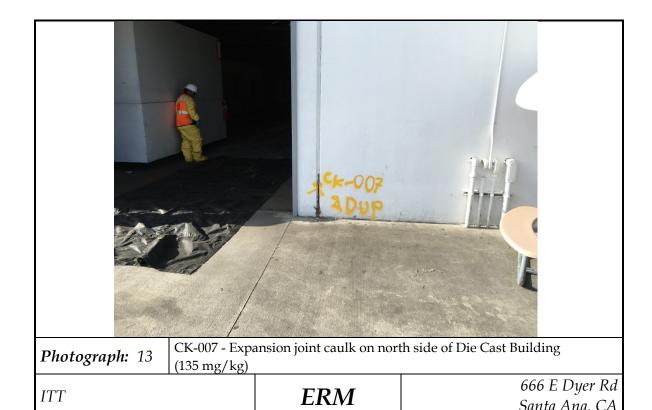


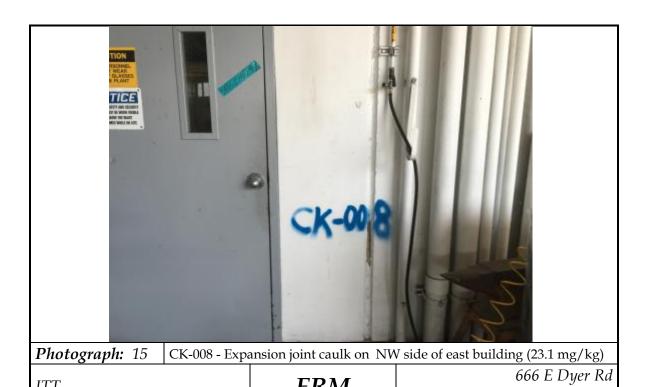


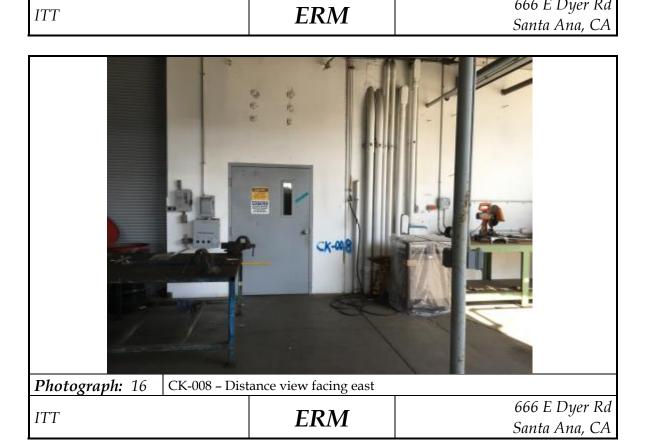




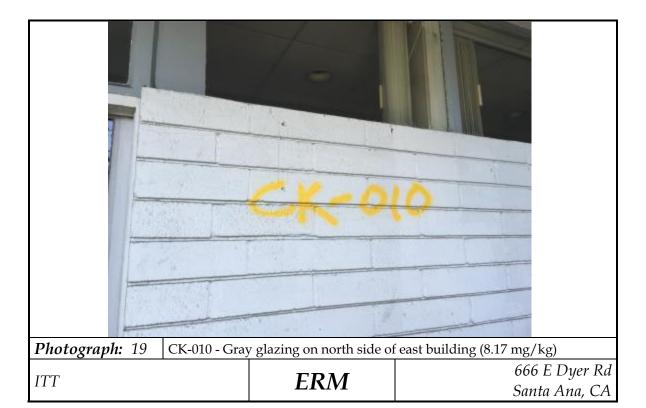


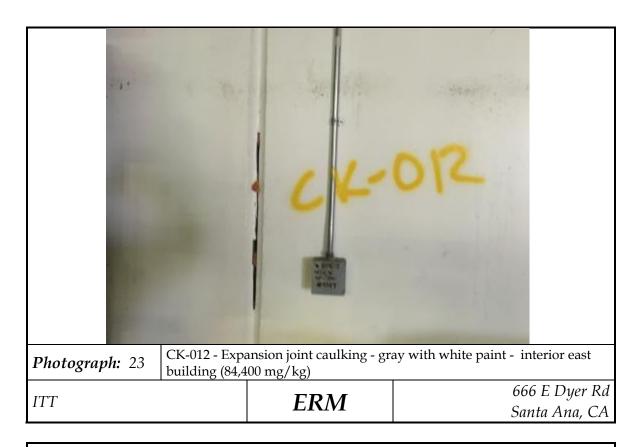


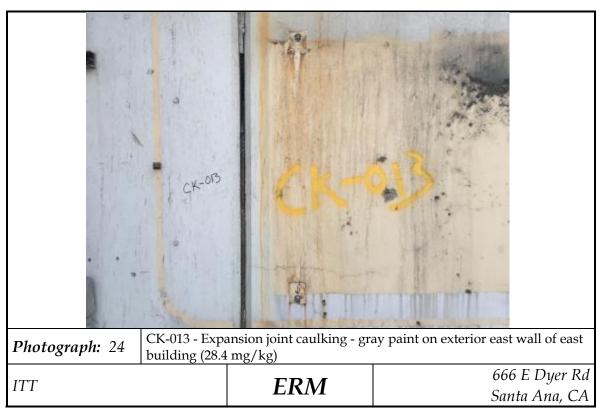




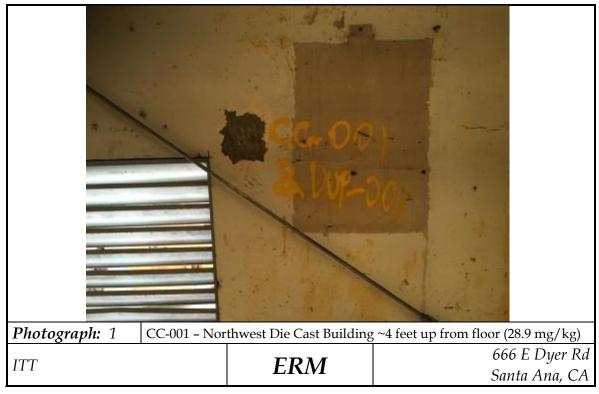


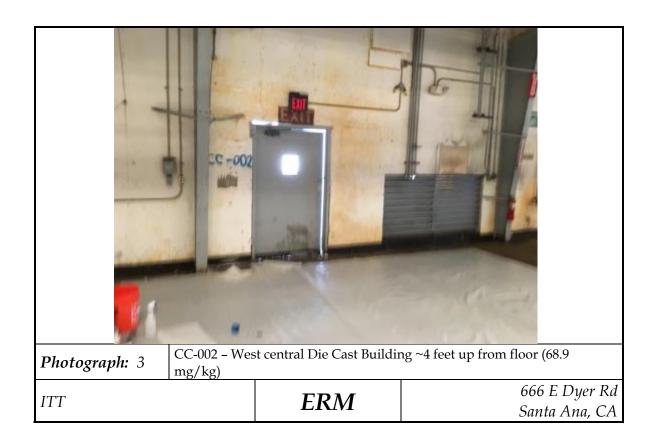






<i>Photograph:</i> 242 CK-012 - Dist	ance facing – no photo	
ITT	ERM	666 E Dyer Ro Santa Ana, CA




ERM West, Inc.

ITT Santa Ana PCB Sampling 666 E Dyer Rd, Santa Ana, CA Concrete Sample Photolog

Photograph: 4	CC-002 - No distance photo	
ITT	ERM	666 E Dyer Rd Santa Ana, CA

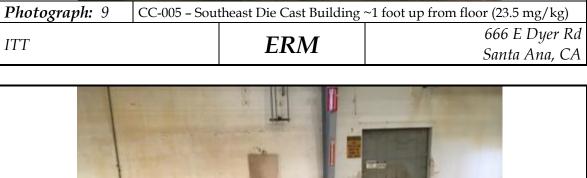
Photograph: 5 | CC-003 - Southwest Die Cast Building ~4 feet up from floor (7.91 mg/kg)

ITT | ERM | 666 E Dyer Rd Santa Ana, CA

Photograph: 6 CC-003 - Distance facing southwest

ITT ERM 666 E Dyer Rd Santa Ana, CA

Photograph: 7 CC-004 – South Die Cast Building ~4 feet up from floor (9.02 mg/kg)


ITT ERM 666 E Dyer Rd
Santa Ana, CA

Photograph: 8 CC-004 – Distance facing southeast

ITT ERM 666 E Dyer Rd Santa Ana, CA

ITT ERM 666 E Dyer Rd Santa Ana, CA

CC-008 –North Die Cast Building ~ 4 feet up from floor (7.64 mg/kg) Photograph: 11

666 E Dyer Rd **ERM** ITTSanta Ana, CA

666 E Dyer Rd **ERM** ITTSanta Ana, CA Appendix B Laboratory Analytical Reports

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Number of Pages 9

Date Received 04/29/2016
Date Reported 05/13/2016

Job Number	Order Date	Client
81416	04/29/2016	ERM

Project ID: 0349890
Project Name: ITT

site: 666 E Dyer Rd.

Santa Ana, CA 92705

Enclosed please find results of analyses of 9 solid and 6 wipe samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com 2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181

CHAIN OF CUSTODY RECORD

00996

Report Mp realts in 49 housen TEST INSTRUCTIONS & COMMENTS 1260, 1262, 1212,1246,1254 deport CC results in 119/14 က် က် B oţ Page_ REPURT Flys Report Aroches Ch ELINQUISHED BY: te 04/29 LABORATORY: Oate: 29 _ 1 10×10 Time: ANALYSIS REQUESTED rinted Name Signature: AETL JOB No. Time: 1501 Printed Name: Pete 6/435 0h58 2259 とから Date: 4 14/16 Hexan. FIERGING Herry Herane Texage Herene PRES.)ate: 79 _ (6 PHONE (049) 623-4703 PROJECT MANAGER TO SON FOURT rinted Name: SAMPLER PROJECT # 0349840 NUMBER/SIZE CONTAINER DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX # Od W. PC 74,72 MIN 2012 W 190 SACRETON OF Wipe GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) PROPERLY COOLED Y /N / NA SAMPLES INTACT XTNTNA 42H 147 SAMPLES ACCEPTED A TIME 147 1460 133 1434 001 1456 140 Janta Any 5101 950 404 0 HARD COPY PDF 7/182/16 DATE 0000 SAME DAY
NEXT DAY
2 DAYS
3 DAYS 21416.12 用しなら 31416.00 3116.00 31416.07 31416.03 81416-10 81911 81416.05 81416.13 21410.0 214les 15 61416.09 31416.0 31416-11 3(4/6.0) LAB ID TURN AROUND TIME RECEIVED IN GOOD COND. Y / N TOTAL NUMBER OF CONTAINERS NORMAL | RUSH CUSTODY SEALS Y/N/NA 2875 Michell 900 CC- DUP-ON COMPANY ADDRESS 100-1 800-77 00-77 SAMPLE ID 700-77 100 -UU 200-7-PROJECT NAME 500-27 うるし、 WP-001 900-d M 1,00-dM WP-002 WP-003 WOOD COMPANY SITE NAME ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/13/2016

Job Number	Order Date	Client
81416	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 15 samples with the following specification on 04/29/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
81416.01	CC-001	04/28/2016	Solid	1
81416.02	CC-002	04/28/2016	Solid	1
81416.03	CC-003	04/28/2016	Solid	1
81416.04	CC-004	04/28/2016	Solid	1
81416.05	CC-005	04/28/2016	Solid	1
81416.06	CC-006	04/28/2016	Solid	1
81416.07	CC-007	04/28/2016	Solid	1
81416.08	CC-008	04/28/2016	Solid	1
81416.09	CC-DUP-001	04/28/2016	Solid	1

	Method	^ Submethod		Req	Date	Priority	TAT	Units	
	(8082) ^]	MG/KG		05/00	6/2016	2	Normal	mg/Kg	
81416	5.10	WP-001	04/28/2	016	Solid			1	
81416	5.11	WP-002	04/28/2	016	Solid	<u>l</u>		1	
81416	5.12	WP-003	04/28/2	016	Solid			1	
81416	5.13	WP-004	04/28/2	016	Solid			1	
81416	5.14	WP-005	04/28/2	016	Solid			1	
81416	5.15	WP-006	04/28/2	016	Solid			1	

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082) ^ WIPE-2	05/06/2016	2	Normal	ug/100cm2

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 2

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050216			
Our Lab I.D.			Method Blank	81416.01	81416.02	
Client Sample I.D.				CC-001	CC-002	
Date Sampled				04/28/2016	04/28/2016	
Date Prepared			05/02/2016	05/02/2016	05/02/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			05/03/2016	05/03/2016	05/03/2016	
Matrix			Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.025	0.050	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.025	0.050	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.025	0.050	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.025	0.050	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.025	0.050	ND	22.9	52.6	
Aroclor-1254 (PCB-1254)	0.025	0.050	ND	6.00	16.3	
Aroclor-1260 (PCB-1260)	0.025	0.050	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.025	0.050	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.025	0.050	ND	ND	ND	
Our Lab I.D.			Method Blank	81416.01	81416.02	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		100	123	91.7	
Tetrachloro-m-xylene	30-150		97.4	97.4	67.3	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 3

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Duton	140. 030210				
Our Lab I.D.			81416.03	81416.04	81416.05	81416.06	81416.07
Client Sample I.D.			CC-003	CC-004	CC-005	CC-006	CC-007
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	04/28/2016
Date Prepared			05/02/2016	05/02/2016	05/02/2016	05/02/2016	05/02/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			05/03/2016	05/03/2016	05/03/2016	05/03/2016	05/03/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			5	5	5	5	5
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	0.125	0.250	5.77	6.81	18.3	4.43	30.1
Aroclor-1254 (PCB-1254)	0.125	0.250	2.14	2.21	5.21	1.15	12.1
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND	ND	ND	ND
Our Lab I.D.			81416.03	81416.04	81416.05	81416.06	81416.07
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		106	100	108	92.0	100
Tetrachloro-m-xylene	30-150		92.6	84.5	82.0	82.0	83.0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 4

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050216			
Our Lab I.D.			81416.08	81416.09		
Client Sample I.D.			CC-008	CC-DUP-001		
Date Sampled			04/28/2016	04/28/2016		
Date Prepared			05/02/2016	05/02/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/03/2016	05/03/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	5.60	24.9		
Aroclor-1254 (PCB-1254)	0.125	0.250	2.04	6.46		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND		
Our Lab I.D.			81416.08	81416.09		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		96.0	107		
Tetrachloro-m-xylene	30-150		82.0	98.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 5

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daten	NO. 0302 16			
Our Lab I.D.			Method Blank	81416.10		
Client Sample I.D.				WP-001		
Date Sampled				04/28/2016		
Date Prepared			05/02/2016	05/02/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/04/2016	05/04/2016		
Matrix			Solid	Solid		
Units			ug/100cm2	ug/100cm2		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.05	0.10	ND	ND		
Aroclor-1221 (PCB-1221)	0.05	0.10	ND	ND		
Aroclor-1232 (PCB-1232)	0.05	0.10	ND	ND		
Aroclor-1242 (PCB-1242)	0.05	0.10	ND	ND		
Aroclor-1248 (PCB-1248)	0.05	0.10	ND	3.05		
Aroclor-1254 (PCB-1254)	0.05	0.10	ND	0.939		
Aroclor-1260 (PCB-1260)	0.05	0.10	ND	ND		
Aroclor-1262 (PCB-1262)	0.05	0.10	ND	ND		
Aroclor-1268 (PCB-1268)	0.05	0.10	ND	ND		
Our Lab I.D.			Method Blank	81416.10		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		67.6	70.3		
Tetrachloro-m-xylene	30-150		63.7	63.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 6

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Datoi	I NO. 0502 IO		
Our Lab I.D.			81416.11		
Client Sample I.D.			WP-002		
Date Sampled			04/28/2016		
Date Prepared			05/02/2016		
Preparation Method			3540C		
Date Analyzed			05/04/2016		
Matrix			Solid		
Units			ug/100cm2		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.10	0.20	ND		
Aroclor-1221 (PCB-1221)	0.10	0.20	ND		
Aroclor-1232 (PCB-1232)	0.10	0.20	ND		
Aroclor-1242 (PCB-1242)	0.10	0.20	ND		
Aroclor-1248 (PCB-1248)	0.10	0.20	59.6		
Aroclor-1254 (PCB-1254)	0.10	0.20	14.9		
Aroclor-1260 (PCB-1260)	0.10	0.20	ND		
Aroclor-1262 (PCB-1262)	0.10	0.20	ND		
Aroclor-1268 (PCB-1268)	0.10	0.20	ND		
Our Lab I.D.			81416.11		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		111		
Tetrachloro-m-xylene	30-150		57.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **7**

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81416 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: U5U216				
Our Lab I.D.			81416.12	81416.13	81416.14	81416.15	
Client Sample I.D.			WP-003	WP-004	WP-005	WP-006	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/02/2016	05/02/2016	05/02/2016	05/02/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			05/04/2016	05/04/2016	05/04/2016	05/04/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			ug/100cm2	ug/100cm2	ug/100cm2	ug/100cm2	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.05	0.10	2.10	0.592	5.82	22.1	
Aroclor-1254 (PCB-1254)	0.05	0.10	0.623	0.159	ND	ND	
Aroclor-1260 (PCB-1260)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.05	0.10	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.05	0.10	ND	ND	ND	ND	
Our Lab I.D.			81416.12	81416.13	81416.14	81416.15	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		74.8	73.2	79.6	79.6	
Tetrachloro-m-xylene	30-150		65.0	62.6	69.5	91.7	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 8

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81416	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050216; Dup or Spiked Sample: 81348.07; LCS: Blank; QC Prepared: 05/02/2016; QC Analyzed: 05/03/2016; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	0.500	0.474	94.8	0.500	0.404	80.8	15.9	75-125	<20
Aroclor-1260 (PCB-1260)	0.00	0.500	0.467	93.4	0.500	0.424	84.8	9.7	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	0.100	0.0948	94.8	0.100	0.0874	87.4	8.1	30-150	<20
Tetrachloro-m-xylene	0.00	0.100	0.101	101	0.100	0.0869	86.9	15.0	30-150	<20

QC Batch No: 050216; Dup or Spiked Sample: 81348.07; LCS: Blank; QC Prepared: 05/02/2016; QC Analyzed: 05/03/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.331	66.2	0.500	0.351	70.2	5.9	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.352	70.4	0.500	0.396	79.2	11.8	75-125	<20	
Surrogates										
Decachlorobiphenyl	0.100	0.0755	75.5	0.100	0.0834	83.4	9.9	30-150	<20	
Tetrachloro-m-xylene	0.100	0.0872	87.2	0.100	0.0923	92.3	5.7	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **9**

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81416	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050216; LCS: Blank; LCS Prepared: 05/02/2016; LCS Analyzed: 05/04/2016; Units: ug/100cm2

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.351	70.2	0.500	0.370	74.0	5.3	50-150	<20	
Aroclor-1260 (PCB-1260)	0.500	0.386	77.2	0.500	0.466	93.2	18.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	0.0500	0.0420	83.9	0.0500	0.0462	92.4	9.6	30-150	<20	
Tetrachloro-m-xylene	0.0500	0.0362	72.4	0.0500	0.0407	81.4	11.7	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet

Number of Pages 7

Date Received 04/29/2016 Date Reported 05/13/2016

Job Number	Order Date	Client
81417	04/29/2016	ERM

Project ID: 0349890 Project Name: ITT Site: ITT

> Enclosed please find results of analyses of 6 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

Environmental Resources Management 777 Botelho Drive, Suite 260 · Walunt Creek, CA, 94596 · (925) 946-0455 · FAX (925) 946-9968

07890 Page_

CHAIN OF CUSTODY RECORD

49/2/18/5/Report Acordors 1016/1221,1232,1242 Jason. Ferneta ermion DATE TIME 1246, 1254, 1263, 1262, 1268
STANDARDTAT
SEND REPORT TO: Jassy Femet 4-59-46153 Report PROUTS In 189/16 REQUESTED PARAMETERS 学・女人を FIELD REMARKS GOLD - PROJECT FILE DATE TIME REPORT J Flags PINK - DATABASE MANAGER DATE 70h5E 4214×05 69 7808 9326 ERM REMARKS OAO MATRIX CANARY - FIELD COPY RECEIVED BY RECEIVED BY RECEIVED BY O O Z F A - Z M E O J. Silbros SAMPLING (A/A) ICE WHITE - LABORATORY COPY PROJECT NAME 951例加州 4-29-16 1815 SEE REMARKS PRESER CHILLED SAMPLING (SIGNATURE) CHE GOSSA SISTEMENT BALL
RECEIVING LABORATORY DATE Scione REMARKS ON SAMPLE RECEIPT GRAB CUSTODY SEALS
SEALS INTACT COMP 4 P28/16/1025 8 M- 25 HP8/16/1125 TIME RELINQUISHED BY (SIGNATURE) 01-21/1/82/1-Shill 9//82/1/900 -W8 RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) Y/28///11/18 427/16 123% SAMPLER: (PRINT NAME) DATE 251800 PROJECT # BOTTLE INTACT PRESERVED BM-007 BM-ONY SAMPLE I.D. BM-003 BM-00

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/13/2016

Job Number	Order Date	Client
81417	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 6 samples with the following specification on 04/29/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
81417.01	BM-001	04/28/2016	Solid	1
81417.02	BM-002	04/27/2016	Solid	1
81417.03	BM-003	04/28/2016	Solid	1
81417.04	BM-004	04/28/2016	Solid	1
81417.05	BM-005	04/28/2016	Solid	1
81417.06	BM-006	04/28/2016	Solid	1

Method ^ Submethod	Req Date	Priority	TAT	Units	
(8082) ^ MG/KG	05/06/2016	2	Normal	mg/Kg	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 2

Project ID: 0349890 Project Name: ITT

o T C G			
TT			

Submitted

Client

81417 04/29/2016 ERM

AETL Job Number

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050316-2		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/03/2016		
Preparation Method			3540C		
Date Analyzed			05/05/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		89.1		
Tetrachloro-m-xylene	30-150		96.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 3

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81417 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050316-2

Our Lab I.D.			81417.01		
Client Sample I.D.			BM-001		
Date Sampled			04/28/2016		
Date Prepared			05/03/2016		
Preparation Method			3540C		
Date Analyzed			05/05/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	ND		
Aroclor-1254 (PCB-1254)	0.125	0.250	ND		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		

Comment(s):

81417.01: Analyzed under dilution due to matrix interference

Our Lab I.D.		81417.01		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	92.0		
Tetrachloro-m-xylene	30-150	95.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 4

Project ID: 0349890 Project Name: ITT

TT			

AETL Job Number	Submitted	Client
81417	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050316-2

Our Lab I.D.			81417.02		
Client Sample I.D.			BM-002		
Date Sampled			04/27/2016		
Date Prepared			05/03/2016		
Preparation Method			3540C		
Date Analyzed			05/05/2016		
Matrix			Solid		
Units			mg/Kg		
ilution Factor	Dilution Factor		200		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	5	10	ND		
Aroclor-1221 (PCB-1221)	5	10	ND		
Aroclor-1232 (PCB-1232)	5	10	ND		
Aroclor-1242 (PCB-1242)	5	10	ND		
Aroclor-1248 (PCB-1248)	5	10	ND		
Aroclor-1254 (PCB-1254)	5	10	ND		
Aroclor-1260 (PCB-1260)	5	10	ND		
Aroclor-1262 (PCB-1262)	5	10	ND		
Aroclor-1268 (PCB-1268)	5	10	ND		

Comment(s):

81417.02: Analyzed under dilution due to matrix interference

Our Lab I.D.	·	81417.02		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	134		
Tetrachloro-m-xylene	30-150	107		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 5

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81417 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050316-2

		40 2000				
Our Lab I.D.			81417.03	81417.04	81417.05	
Client Sample I.D.			BM-003	BM-004	BM-005	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/03/2016	05/03/2016	05/03/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			05/05/2016	05/05/2016	05/05/2016	
Matrix			Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			2	2	2	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.050	0.100	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.050	0.100	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.050	0.100	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.050	0.100	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.050	0.100	6.68	10.7	9.3	
Aroclor-1254 (PCB-1254)	0.050	0.100	ND	ND	ND	
Aroclor-1260 (PCB-1260)	0.050	0.100	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.050	0.100	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.050	0.100	ND	ND	ND	
Our Lab I.D.			81417.03	81417.04	81417.05	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		90.6	82.8	104	
Tetrachloro-m-xylene	30-150		59.0	74.8	66.7	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 6

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81417 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050316-2

		QO DUIOII I	10. 030310-2		
Our Lab I.D.			81417.06		
Client Sample I.D.			BM-006		
Date Sampled			04/28/2016		
Date Prepared			05/03/2016		
Preparation Method			3540C		
Date Analyzed			05/05/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	30.0		
Aroclor-1254 (PCB-1254)	0.125	0.250	ND		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		
Our Lab I.D.			81417.06		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		86.0		
Tetrachloro-m-xylene	30-150		81.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **7**

Project ID: 0349890 Project Name: ITT Site ITT

AETL Job Number	Submitted	Client
81417	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050316-2; Dup or Spiked Sample: 81418.20; LCS: Blank; QC Prepared: 05/03/2016; QC Analyzed: 05/05/2016; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	0.500	0.393	78.6	0.500	0.359	71.8	9.0	75-125	<20
Aroclor-1260 (PCB-1260)	0.00	0.500	0.478	95.6	0.500	0.422	84.4	12.4	75-125	<20
Surrogates										
Decachlorobiphenyl	0.00	0.100	0.101	101	0.100	0.0824	82.4	20.3	30-150	<20
Tetrachloro-m-xylene	0.00	0.100	0.104	104	0.100	0.0924	92.4	11.8	30-150	<20

QC Batch No: 050316-2; Dup or Spiked Sample: 81418.20; LCS: Blank; QC Prepared: 05/03/2016; QC Analyzed: 05/05/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1016 (PCB-1016)	0.500	0.675	135	75-125			
Aroclor-1260 (PCB-1260)	0.500	0.715	143	75-125			
Surrogates							
Decachlorobiphenyl	0.100	0.103	103	30-150			
Tetrachloro-m-xylene	0.100	0.0894	89.4	30-150			

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet

Number of Pages 10

Date Received 04/29/2016 Date Reported 05/16/2016

Job Number	Order Date	Client
81419	04/29/2016	ERM

Project ID: 0349890 Project Name: ITT Site: ITT

> Enclosed please find results of analyses of 14 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

Environmental Resources Management 1777 Botelho Drive, Suite 260 ● Walunt Creek, CA, 94596 ● (925) 946-0455 ● FAX (925) 946-9968

CHAIN OF CUSTODY RECORD

ECORD Page

No. 07891

Page____

DATE TIME Report J Flags lol6, 1721, was 1232 Str. 1246/154/120, 1262,1268 SEND REPORT TO: 70 8/4/9.09 9 80 .61418 0/16/10 0 0 REQUESTED PARAMETERS 6/1/18 61418 Juson terniton Princon FIELD REMARKS 8/4/9. 4-22/2 (553 Report Pesuts in My/ 169 Fernet Jason DATE TIME TIME DATE | TIME DATE 70/58 FQ 7808 5878 **ERM REMARKS** OAO MATRIX RECEIVED BY RECEIVED BY RECEIVED BY Samois.p OOZHA-ZUEG SAMPLING (V/N) ICE 1553 PROJECT NAME 18/8 PRESER-SVITAV SEE REMARKS CHILLED SAMPLING (SIGNATURE) *31/57/*h 2162-6 Scrape RECEIVING LABORATORY DATE DATE Sc 100C Pete Gross /Jusa Pernet/ Ba beatile of REMARKS ON SAMPLE RECEIPT CHAB CUSTODY SEALS SEALS INTACT COMP UH 7/14/14 She 31/61 4 500-71 TIME 4/27/16/1130 CK-007 4128/16 0805 CK-008 4/28/16/1633 RELINGUISHED BY (SIGNATURE) 1355 1245 RELINQUISHED BY (SIGNATURE) CK-DUP-TON 4/18/16/1000 RELINQUISHED BY (SIGNATURE) CIC-304 H/W/6 1162 SAMPLER: (PRINT NAME) 4/13/16 0K-02 4/3/11 DATE PROJECT # 0249890 ☐ BOTTLE INTACT 29/3/ ☐ PRESERVED [14-003 1500 SAMPLE I.D. CK-006

GOLD - PROJECT FILE

PINK - DATABASE MANAGER

CANARY - FIELD COPY

WHITE - LABORATORY COPY

Environmental Resources Management 777 Botelho Drive, Suite 260

■ Walunt Creek, CA

94596

(925) 946-0455

FAX (925) 946-9968

CHAIN OF CUSTODY RECORD

NO: Nº 07894

DATE TIME 1246, 1254, (263, 1262, 1268)
SATE TIME 1246, 1254, (263, 1262, 1268) JUSH. ternet QEIN.COM -Report results in Malka SEND REPORT TO: Jayon Ferner 8/8/19/14 REQUESTED PARAMETERS FIELD REMARKS GOLD - PROJECT FILE TIME Report O # 1995 PINK - DATABASE MANAGER -SS/1-12-6 DATE TIME 794**5**8 42/42569 2808 329 **ERM REMARKS** 0 A 0 MATRIX CANARY - FIELD COPY RECEIVED BY RECEIVED BY 00Z-4-ZUE0 SAMPLING
SYOUME 124 184 184 N WHITE - LABORATORY COPY PROJECT NAME SEE REMARKS 51.81 97-62-6 -ABSBA9 BVITAV CHILLED SAMPLING (SIGNATURE) RECEIVING LABORATORY DATE X Scape REMARKS ON SAMPLE RECEIPT CUSTODY SEALS
SEALS INTACT Jim Leit, Jason, Feart, Pur Galik COMP 1625 14/2/16 1700 5831 TIME RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) 4/28/16/1930 RELINQUISHED BY (SIGNATURE) SAMPLER: (PRINT NAME) DATE PROJECT # 0349890 BOTTLE INTACT ☐ PRESERVED SAMPLE I.D. CK-010 CK-013 Ck-31 05-012

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81419	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 14 samples with the following specification on 04/29/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
81419.01	CK-001	04/27/2016	Solid	1
81419.02	CK-002	04/27/2016	Solid	1
81419.03	CK-003	04/27/2016	Solid	1
81419.04	CK-004	04/27/2016	Solid	1
81419.05	CK-005	04/27/2016	Solid	1
81419.06	CK-006	04/27/2016	Solid	1
81419.07	CK-007	04/28/2016	Solid	1
81419.08	CK-008	04/28/2016	Solid	1
81419.09	CK-DUP-001	04/28/2016	Solid	1
81419.10	CK-009	04/28/2016	Solid	1
81419.11	CK-010	04/28/2016	Solid	1
81419.12	CK-011	04/28/2016	Solid	1
81419.13	CK-012	04/28/2016	Solid	1
81419.14	CK-013	04/28/2016	Solid	1
Metho	od ^ Submethod	Req I	Date Priority T	AT Units

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082) ^ MG/KG	05/06/2016	2	Normal	mg/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Kaymara
Checked By: _	Approved By:	<u> </u>

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 2

Project ID: 0349890 Project Name: ITT

3100			
ITT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050516		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/04/2016		
Preparation Method			3540C		
Date Analyzed			05/09/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		90.2		
Tetrachloro-m-xylene	30-150		86.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 3

Project ID: 0349890 Project Name: ITT

TT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: U5U516		
Our Lab I.D.			81419.01		
Client Sample I.D.			CK-001		
Date Sampled			04/27/2016		
Date Prepared			05/04/2016		
Preparation Method			3540C		
Date Analyzed			05/09/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	ND		
Aroclor-1254 (PCB-1254)	0.125	0.250	ND		
Aroclor-1260 (PCB-1260)	0.125	0.250	165,000		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		
Our Lab I.D.			81419.01		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		0.0 s6		
Tetrachloro-m-xylene	30-150		97.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 4

Project ID: 0349890 Project Name: ITT

Site			
ITT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Balcii	NO: U5U516		
Our Lab I.D.			81419.02		
Client Sample I.D.			CK-002		
Date Sampled			04/27/2016		
Date Prepared			05/04/2016		
Preparation Method			3540C		
Date Analyzed			05/09/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	8.15		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			81419.02		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		143		
Tetrachloro-m-xylene	30-150		207 S6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Si

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 5

Project ID: 0349890 Project Name: ITT

,100		
TT		

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Datch	NO. 030316			
Our Lab I.D.			81419.03	81419.04		
Client Sample I.D.			CK-003	CK-004		
Date Sampled			04/27/2016	04/27/2016		
Date Prepared			05/04/2016	05/04/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/09/2016	05/09/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	ND	98.7		
Aroclor-1254 (PCB-1254)	0.125	0.250	79.7	ND		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND		
Our Lab I.D.			81419.03	81419.04		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		63.5	272 S6		
Tetrachloro-m-xylene	30-150		136	133		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 6

Project ID: 0349890 Project Name: ITT

,100			
TT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: 050516			
Our Lab I.D.			81419.05	81419.06		
Client Sample I.D.			CK-005	CK-006		
Date Sampled			04/27/2016	04/27/2016		
Date Prepared			05/04/2016	05/04/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/09/2016	05/09/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND	237,000		
Aroclor-1260 (PCB-1260)	0.025	0.050	1,190	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND	ND		
Our Lab I.D.			81419.05	81419.06		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		82.1	0.0 56		
Tetrachloro-m-xylene	30-150		0.0 s6	92.9		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **7**

Project ID: 0349890 Project Name: ITT Site ITT

AETL Job Number	Submitted	Client
81419	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: U5U516				
Our Lab I.D.			81419.07	81419.08	81419.09	81419.10	81419.11
Client Sample I.D.			CK-007	CK-008	CK-DUP-001	CK-009	CK-010
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	04/28/2016
Date Prepared			05/04/2016	05/04/2016	05/04/2016	05/04/2016	05/04/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			05/09/2016	05/09/2016	05/09/2016	05/09/2016	05/09/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			5	5	5	5	5
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	0.125	0.250	90.6	15.8	105	ND	2.47
Aroclor-1254 (PCB-1254)	0.125	0.250	44.4	7.30	ND	ND	ND
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND	ND	3.15	5.70
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND	ND	ND	ND
Our Lab I.D.			81419.07	81419.08	81419.09	81419.10	81419.11
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		131	111	143	103	92.5
Tetrachloro-m-xylene	30-150		141	86.5	108	62.3	120

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 8

Project ID: 0349890 Project Name: ITT

Site			
ITT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: 050516			
Our Lab I.D.			81419.12	81419.13		
Client Sample I.D.			CK-011	CK-012		
Date Sampled			04/28/2016	04/28/2016		
Date Prepared			05/04/2016	05/04/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/09/2016	05/09/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			5	5		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	1.96	55,300		
Aroclor-1254 (PCB-1254)	0.125	0.250	2.57	29,100		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND		
Our Lab I.D.			81419.12	81419.13		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		87.5	0.0 S6		
Tetrachloro-m-xylene	30-150		83.5	77.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 9

Project ID: 0349890 Project Name: ITT

Site			
ITT			

AETL Job Number Submitted Client 81419 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050516		
Our Lab I.D.			81419.14		
Client Sample I.D.			CK-013		
Date Sampled			04/28/2016		
Date Prepared			05/04/2016		
Preparation Method			3540C		
Date Analyzed			05/09/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			50		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	1.250	2.500	ND		
Aroclor-1221 (PCB-1221)	1.250	2.500	ND		
Aroclor-1232 (PCB-1232)	1.250	2.500	ND		
Aroclor-1242 (PCB-1242)	1.250	2.500	ND		
Aroclor-1248 (PCB-1248)	1.250	2.500	14.9		
Aroclor-1254 (PCB-1254)	1.250	2.500	13.5		
Aroclor-1260 (PCB-1260)	1.250	2.500	ND		
Aroclor-1262 (PCB-1262)	1.250	2.500	ND		
Aroclor-1268 (PCB-1268)	1.250	2.500	ND		
Our Lab I.D.			81419.14		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		121		
Tetrachloro-m-xylene	30-150		138		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 10

Project ID: 0349890 Project Name: ITT Site ITT

AETL Job Number	Submitted	Client
81419	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050516; LCS: Blank; LCS Prepared: 05/04/2016; LCS Analyzed: 05/09/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.304	60.7	0.500	0.299	59.8	1.5	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.375	75.0	0.500	0.376	75.2	<1	75-125	<20	
Surrogates										
Decachlorobiphenyl	0.100	0.0695	69.5	0.100	0.0698	69.8	<1	30-150	<20	
Tetrachloro-m-xylene	0.100	0.0704	70.4	0.100	0.0685	68.5	2.7	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Number of Pages 22

Date Received 04/29/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81420	04/29/2016	ERM

Project ID: 0349890
Project Name: ITT

site: 666 E Dyer Rd.

Santa Ana, CA 92705

Enclosed please find results of analyses of 34 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD 96468

TEST INSTRUCTIONS & COMMENTS Report Results in My/ligh Report Aroclars 1016, P24, 1232, P42, 1246 8971 က် 1814 ф 1254, 1260, 1267 RELINQUISHED BY: Date: 4-79-16 LABORATORY 129 ignature Time: ANALYSIS REQUESTED PROJECT MANAGER Jason Ferret Fresh RECEIVED BY inted Name Signature Time: 1534 Pete Gam 878 Date: U No //C RELINOUISHED BY PRES. Suite 22 PHONE (PUB) 623-4730 SAMPLER: PROJECT # 0349843 NUMBER/SIZE CONTAINER DATA DELIVERABLE REQUIRED SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX # Od JOS OF raint 4 4 4 Part GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y N / NA Scarta Ana SAMPLES INTACT W/ NX NA SAMPLES ACCEPTED Y N TIME 1600 1200 1640 1000 1623 西河 1025 2 00 HARD COPY PDF Michelle Drive 5/1/27/1/0)// £2/ ho 0/ 81420.02 04 127116 1/1851 40 120.05/18 311430.040.127116 3/1821 40 90.08/18 204/28/16 8/420.01 24128/16 04 1/8/16 81420-03 04 127 116 81420-09/04/127/ DATE - XZ 1-0 E Dyer Kd SAME DAY
NEXT DAY
2 DAYS
3 DAYS 8/420-07 81420.05 8/420. LAB ID ×1420. **TURN AROUND TIME FOTAL NUMBER OF CONTAINERS** RECEIVED IN GOOD COND. (Y) N RUSH CUSTODY SEALS Y (N / NA PROJECT NAME COMPANY ADDRESS COMPANY ERA 400-1d 500-7a Pro Se SAMPLE ID P(-007 PC-001 3 96-068 9000-7 410-76 96-DIO 510-76 30-13 PC-012 20-211 NORMAL 20-29 SITE NAME ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originatof

Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com 2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181

CHAIN OF CUSTODY RECORD

9646 2 Z

Report Arodovs, 1244,1246 1016, 1221, 129, 1244,1246 1254, 1260, 1262, 1268 TEST INSTRUCTIONS & COMMENTS Report (esultin my/kg က <u>ペ</u>ペ Page Report of Flays **ReMEDYS** RELINQUISHED BY: 21-12-4 LABORATORY 200 Time: ANALYSIS REQUESTED ATT JOB NO. 8/42 0 RELINQUISHED BY: RECEIVED BY Printed Name Signature DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator 2808 5878 Date: 4/24/16 PHONE (949) 623-470, Signature: U PRES. 1 Jate: 7.9 PROJECT MANAGER TOSS IN FEITHE SAMPLER: PROJECT # (734989) NUMBER/SIZE CONTAINER DATA DELIVERABLE REQUIRED TO BE FILLED BY LABORATORY MATRIX # Od tan t Pale, Sik 200 Irving FAX Point 2/27 1050 Pant Je A 4 GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y/N/NA SAMPLES INTACT (Y/) NA SAMPLES ACCEPTER Y/N 1424 TIME 1020 0260 ングルーグ 290 0944 1039 000 1510 10,5 711 2445 00 HARD COPY PDF 412x/16 X1420-19 +1128116 412%/6 91/81/6 91/82/15 4/28/11 3/1/2/11 411/21/1 2128/16 81420-24 4 12x 11 26 41 28 /IL DATE 418/16 SAME DAY
NEXT DAY
2 DAYS
3 DAYS 2875 Michelle 81430-40 81420-21 SAMPLE RECEIPT-3/420.2 历名十 LAB ID 3/430. 814201 **FURN AROUND TIME** TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND Y IN RUSH CUSTODY SEALS Y N NA S S 91-027 COMPANY ADDRESS P(-52% PROJECT NAME SAMPLE ID PC-016 1018 20-70 -033 91-024 9(-029 PC-017 20-07 96-319 P(-025 170-1d Q(-23) NORMAL 170-70 COMPANY SITE NAME ADDRESS

18 Report Aradors 1016, 1221, 12341242 00 00 01 19 son. Fernetare rancon 0 9-20-161556 Report 103/15 (in mg/169 ō 1246, 1254,126,1262,1268 Standard TAT REQUESTED PARAMETERS 3 7 FIELD REMARKS 3 3 0 GOLD - PROJECT FILE 81420. 00. 2000 200% 81420 グングの 1420 DATE TIME KEPS, + J Flogs SEND REPORT TO: Page_ 00 PINK - DATABASE MANAGER GHAIN OF CUSTODY RECORD TIME TIME DATE DATE 1961 2042 & 49/40A ५८८ है० हर 9875 Michelly prine 50 Water CA 9250 (9-64) (23-170) +777 Botelho Drive Suite 260 Water Orch, CA. 34550 (925) 946 9455 • FAX (925) 946-9968 **ERM REMARKS** SAS MATRIX CANARY - FIELD COPY шс RECEIVED BY RECEIVED BY U) S P COZFA-ZHES Jarg 15-7 SAMPLING VOLUME (A\N) ICE WHITE - LABORATORY COPY 250 PROJECT NAME TIME TIME 4-29-161815 PRESER. SEE REMARKS CHILLED SAMPLING (SIGNATURE) RECEIVING LABORATORY DATE DATE X Scrape Environmental Resources REMARKS ON SAMPLE RECEIPT Card I'm Leist Pant Par Gathe X CUSTODY SEALS
SEALS INTACT GRAB COMP 0211 4 728/16 1135 20-004-MY 4/28/16/0945 Pr-03(4/128/16 1235 TIME 7116 RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) wh1 91/87/月七50-RELINQUISHED BY (SIGNATURE) PC-DUP-DOS 4/18/16/1105 PC-064-MS 4128/16 29930 SAMPLER: (PRINT NAME) 4/28/14 7/87/ JAMES D 11/82/14 DATE PROJECT # 0344890 ☐ BOTTLE INTACT AETL ☐ PRESERVED 750--033 SAMPLE I.D. 1034 PC-031

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81420	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 34 samples with the following specification on 04/29/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
81420.01	PC-001	04/28/2016	Solid	1
81420.02	PC-004	04/27/2016	Solid	3
81420.03	PC-005	04/27/2016	Solid	1
81420.04	PC-006	04/27/2016	Solid	1
81420.05	PC-007	04/27/2016	Solid	1
81420.06	PC-008	04/28/2016	Solid	1
81420.07	PC-009	04/28/2016	Solid	1
81420.08	PC-010	04/28/2016	Solid	1
81420.09	PC-011	04/28/2016	Solid	1
81420.10	PC-012	04/28/2016	Solid	1
81420.11	PC-014	04/28/2016	Solid	1
81420.12	PC-015	04/28/2016	Solid	1
81420.13	PC-016	04/28/2016	Solid	1
81420.14	PC-017	04/28/2016	Solid	1
81420.15	PC-018	04/28/2016	Solid	1
81420.16	PC-019	04/28/2016	Solid	1
81420.17	PC-020	04/27/2016	Solid	1
81420.18	PC-021	04/28/2016	Solid	1
81420.19	PC-022	04/28/2016	Solid	1
81420.20	PC-023	04/28/2016	Solid	1
81420.21	PC-024	04/28/2016	Solid	1
81420.22	PC-025	04/28/2016	Solid	1
81420.23	PC-026	04/28/2016	Solid	1
81420.24	PC-027	04/28/2016	Solid	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/16/2016

Job Number	Order Date	Client
81420	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

81420.25	PC-028	04/28/2016	Solid	1
81420.26	PC-029	04/28/2016	Solid	1
81420.27	PC-030	04/28/2016	Solid	1
81420.28	PC-031	04/28/2016	Solid	1
81420.29	PC-032	04/28/2016	Solid	1
81420.30	PC-033	04/28/2016	Solid	1
81420.31	PC-034	04/28/2016	Solid	1
81420.32	PC-036	04/28/2016	Solid	1
81420.33	PC-037	04/28/2016	Solid	1
81420.34	PC-DUP-003	04/28/2016	Solid	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082) ^ MG/KG	05/06/2016	2	Normal	mg/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Reymana
Checked By:	Approved By:	J

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 2

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 050616

Our Lab I.D.			Method Blank	81420.01	
Client Sample I.D.				PC-001	
Date Sampled				04/28/2016	
Date Prepared			05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	
Date Analyzed			05/09/2016	05/09/2016	
Matrix			Solid	Solid	
Units			mg/Kg	mg/Kg	
Dilution Factor			1	1	
Analytes	MDL	PQL	Results	Results	
Aroclor-1016 (PCB-1016)	0.025	0.050	ND	ND	
Aroclor-1221 (PCB-1221)	0.025	0.050	ND	ND	
Aroclor-1232 (PCB-1232)	0.025	0.050	ND	ND	
Aroclor-1242 (PCB-1242)	0.025	0.050	ND	ND	
Aroclor-1248 (PCB-1248)	0.025	0.050	ND	ND	
Aroclor-1254 (PCB-1254)	0.025	0.050	ND	ND	
Aroclor-1260 (PCB-1260)	0.025	0.050	ND	ND	
Aroclor-1262 (PCB-1262)	0.025	0.050	ND	ND	
Aroclor-1268 (PCB-1268)	0.025	0.050	ND	ND	
Our Lab I.D.			Method Blank	81420.01	
Surrogates	%Rec.Limit		% Rec.	% Rec.	
Decachlorobiphenyl	30-150		83.8	114	
Tetrachloro-m-xylene	30-150		87.2	114	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **3**

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

Our Lab I.D.			81420.02	81420.03	81420.04	81420.05	81420.06
Client Sample I.D.			PC-004	PC-005	PC-006	PC-007	PC-008
Date Sampled			04/27/2016	04/27/2016	04/27/2016	04/27/2016	04/28/2016
Date Prepared			05/06/2016	05/06/2016	05/06/2016	05/06/2016	05/06/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			05/09/2016	05/10/2016	05/10/2016	05/11/2016	05/10/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			5	5	5	5	5
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	0.125	0.250	ND	4.86	1.74	ND	2.18
Aroclor-1254 (PCB-1254)	0.125	0.250	ND	4.10	2.16	ND	ND
Aroclor-1260 (PCB-1260)	0.125	0.250	605	ND	ND	ND	1.51
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND	ND	ND	ND

Comment(s):

81420.05: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.02	81420.03	81420.04	81420.05	81420.06
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	455 S6	116	82.8	84.9	75.8
Tetrachloro-m-xylene	30-150	98.6	72.4	70.9	107	110

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 4

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050616		
Our Lab I.D.			81420.07		
Client Sample I.D.			PC-009		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			35		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.875	1.750	ND		
Aroclor-1221 (PCB-1221)	0.875	1.750	ND		
Aroclor-1232 (PCB-1232)	0.875	1.750	ND		
Aroclor-1242 (PCB-1242)	0.875	1.750	ND		
Aroclor-1248 (PCB-1248)	0.875	1.750	22.5		
Aroclor-1254 (PCB-1254)	0.875	1.750	26.3		
Aroclor-1260 (PCB-1260)	0.875	1.750	ND		
Aroclor-1262 (PCB-1262)	0.875	1.750	ND		
Aroclor-1268 (PCB-1268)	0.875	1.750	ND		
Our Lab I.D.			81420.07		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		85.3		
Tetrachloro-m-xylene	30-150		83.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 5

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

		QO Daton	110. 000010		
Our Lab I.D.			81420.08		
Client Sample I.D.			PC-010		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			15		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.375	0.750	ND		
Aroclor-1221 (PCB-1221)	0.375	0.750	ND		
Aroclor-1232 (PCB-1232)	0.375	0.750	ND		
Aroclor-1242 (PCB-1242)	0.375	0.750	ND		
Aroclor-1248 (PCB-1248)	0.375	0.750	ND		
Aroclor-1254 (PCB-1254)	0.375	0.750	ND		
Aroclor-1260 (PCB-1260)	0.375	0.750	ND		
Aroclor-1262 (PCB-1262)	0.375	0.750	ND		
Aroclor-1268 (PCB-1268)	0.375	0.750	ND		

Comment(s):

81420.08: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.08		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	64.9		
Tetrachloro-m-xylene	30-150	115		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 6

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050616		
Our Lab I.D.			81420.09		
Client Sample I.D.			PC-011		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	6.29		
Aroclor-1254 (PCB-1254)	0.125	0.250	6.68		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		
Our Lab I.D.			81420.09		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		99.4		
Tetrachloro-m-xylene	30-150		188		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **7**

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050616		
Our Lab I.D.			81420.10		
Client Sample I.D.			PC-012		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/11/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			7		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.175	0.350	ND		
Aroclor-1221 (PCB-1221)	0.175	0.350	ND		
Aroclor-1232 (PCB-1232)	0.175	0.350	ND		
Aroclor-1242 (PCB-1242)	0.175	0.350	ND		
Aroclor-1248 (PCB-1248)	0.175	0.350	ND		
Aroclor-1254 (PCB-1254)	0.175	0.350	1.63		
Aroclor-1260 (PCB-1260)	0.175	0.350	ND		
Aroclor-1262 (PCB-1262)	0.175	0.350	ND		
Aroclor-1268 (PCB-1268)	0.175	0.350	ND		
Our Lab I.D.			81420.10		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		134		
Tetrachloro-m-xylene	30-150		116		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 8

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

		QO Duton	110. 000010			
Our Lab I.D.			81420.11			
Client Sample I.D.			PC-014			
Date Sampled			04/28/2016			
Date Prepared			05/06/2016			
Preparation Method			3540C			
Date Analyzed			05/10/2016			
Matrix			Solid			
Units	Units		mg/Kg			
Dilution Factor			40			
Analytes	MDL	PQL	Results			
Aroclor-1016 (PCB-1016)	1.000	2.000	ND			
Aroclor-1221 (PCB-1221)	1.000	2.000	ND			
Aroclor-1232 (PCB-1232)	1.000	2.000	ND			
Aroclor-1242 (PCB-1242)	1.000	2.000	ND			
Aroclor-1248 (PCB-1248)	1.000	2.000	ND			
Aroclor-1254 (PCB-1254)	1.000	2.000	ND			
Aroclor-1260 (PCB-1260)	1.000	2.000	ND			
Aroclor-1262 (PCB-1262)	1.000	2.000	ND			
Aroclor-1268 (PCB-1268)	1.000	2.000	ND			
` '		l .		1	1	1

Comment(s):

81420.11: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.11		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	123		
Tetrachloro-m-xylene	30-150	64.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 9

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

Our Lab I.D.			81420.12		
Client Sample I.D.			PC-015		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	ND		
Aroclor-1254 (PCB-1254)	0.125	0.250	ND		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		

Comment(s):

81420.12: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.12		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	96.6		
Tetrachloro-m-xylene	30-150	132		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 10

Project ID: 0349890 Project Name: ITT

Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

Our Lab I.D.			81420.13		
Client Sample I.D.			PC-016		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.050	0.100	ND		
Aroclor-1221 (PCB-1221)	0.050	0.100	ND		
Aroclor-1232 (PCB-1232)	0.050	0.100	ND		
Aroclor-1242 (PCB-1242)	0.050	0.100	ND		
Aroclor-1248 (PCB-1248)	0.050	0.100	ND		
Aroclor-1254 (PCB-1254)	0.050	0.100	ND		
Aroclor-1260 (PCB-1260)	0.050	0.100	ND		
Aroclor-1262 (PCB-1262)	0.050	0.100	ND		
Aroclor-1268 (PCB-1268)	0.050	0.100	ND		

Comment(s):

81420.13: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.13		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	109		
Tetrachloro-m-xylene	30-150	89.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 11

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050616		
Our Lab I.D.			81420.14		
Client Sample I.D.			PC-017		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	6.48		
Aroclor-1254 (PCB-1254)	0.125	0.250	3.65		
Aroclor-1260 (PCB-1260)	0.125	0.250	ND		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		
Our Lab I.D.			81420.14		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		76.3		
Tetrachloro-m-xylene	30-150		60.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 12

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	No: 050616		
Our Lab I.D.			81420.15		
Client Sample I.D.			PC-018		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/11/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			30		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.750	1.500	ND		
Aroclor-1221 (PCB-1221)	0.750	1.500	ND		
Aroclor-1232 (PCB-1232)	0.750	1.500	ND		
Aroclor-1242 (PCB-1242)	0.750	1.500	ND		
Aroclor-1248 (PCB-1248)	0.750	1.500	ND		
Aroclor-1254 (PCB-1254)	0.750	1.500	11.7		
Aroclor-1260 (PCB-1260)	0.750	1.500	ND		
Aroclor-1262 (PCB-1262)	0.750	1.500	ND		
Aroclor-1268 (PCB-1268)	0.750	1.500	ND		
Our Lab I.D.			81420.15		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		143		
Tetrachloro-m-xylene	30-150		57.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 13

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

		QO Duton	110. 000010				
Our Lab I.D.			81420.16				
Client Sample I.D.			PC-019				
Date Sampled			04/28/2016				
Date Prepared			05/06/2016				
Preparation Method			3540C				
Date Analyzed			05/10/2016				
Matrix			Solid				
Units			mg/Kg				
Dilution Factor			5				
Analytes	MDL	PQL	Results				
Aroclor-1016 (PCB-1016)	0.125	0.250	ND				
Aroclor-1221 (PCB-1221)	0.125	0.250	ND				
Aroclor-1232 (PCB-1232)	0.125	0.250	ND				
Aroclor-1242 (PCB-1242)	0.125	0.250	ND				
Aroclor-1248 (PCB-1248)	0.125	0.250	ND				
Aroclor-1254 (PCB-1254)	0.125	0.250	ND				
Aroclor-1260 (PCB-1260)	0.125	0.250	ND				
Aroclor-1262 (PCB-1262)	0.125	0.250	ND				
Aroclor-1268 (PCB-1268)	0.125	0.250	ND				
,	1	1	1	I.	1	1	1

Comment(s):

81420.16: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.16		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	112		
Tetrachloro-m-xylene	30-150	96.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 14

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616

		QO Dato	1110.000010		
Our Lab I.D.			81420.17		
Client Sample I.D.			PC-020		
Date Sampled			04/27/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/10/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			200		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	5	10	ND		
Aroclor-1221 (PCB-1221)	5	10	ND		
Aroclor-1232 (PCB-1232)	5	10	ND		
Aroclor-1242 (PCB-1242)	5	10	ND		
Aroclor-1248 (PCB-1248)	5	10	ND		
Aroclor-1254 (PCB-1254)	5	10	ND		
Aroclor-1260 (PCB-1260)	5	10	ND		
Aroclor-1262 (PCB-1262)	5	10	ND		
Aroclor-1268 (PCB-1268)	5	10	ND		
. , , , , , , , , , , , , , , , , , , ,				1	1

Comment(s):

81420.17: Analyzed under dilution due to matrix interference

Our Lab I.D.		81420.17		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	0.0 s6		
Tetrachloro-m-xylene	30-150	0.0 56		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 15

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

	QC BALCH NO. 050010							
Our Lab I.D.			81420.18	81420.19	81420.20			
Client Sample I.D.			PC-021	PC-022	PC-023			
Date Sampled			04/28/2016	04/28/2016	04/28/2016			
Date Prepared			05/06/2016	05/06/2016	05/06/2016			
Preparation Method			3540C	3540C	3540C			
Date Analyzed			05/10/2016	05/10/2016	05/10/2016			
Matrix			Solid	Solid	Solid			
Units			mg/Kg	mg/Kg	mg/Kg			
Dilution Factor			5	5	5			
Analytes	MDL	PQL	Results	Results	Results			
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND	ND			
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND	ND			
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND	ND			
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND	ND			
Aroclor-1248 (PCB-1248)	0.125	0.250	161	399	154			
Aroclor-1254 (PCB-1254)	0.125	0.250	ND	ND	52.8			
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND	29.3			
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND	ND			
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND	ND			
Our Lab I.D.			81420.18	81420.19	81420.20			
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.			
Decachlorobiphenyl	30-150		78.8	113	690 S6			
Tetrachloro-m-xylene	30-150		85.4	70.7	85.5			

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 16

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch I	No: 050616-2		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/11/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		95.2		
Tetrachloro-m-xylene	30-150		104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 17

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Baton i	10. 030010-2				
Our Lab I.D.			81420.21	81420.22	81420.23	81420.24	
Client Sample I.D.			PC-024	PC-025	PC-026	PC-027	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/06/2016	05/06/2016	05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			05/11/2016	05/11/2016	05/11/2016	05/11/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			10	10	10	10	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.250	0.500	395	605	442	181	
Aroclor-1254 (PCB-1254)	0.250	0.500	ND	ND	64.0	38.5	
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND	ND	ND	
Our Lab I.D.			81420.21	81420.22	81420.23	81420.24	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		98.5	94.6	63.2	130	
Tetrachloro-m-xylene	30-150		93.0	124	82.0	100	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 18

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: U5U616-2		
Our Lab I.D.			81420.25		
Client Sample I.D.			PC-028		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/11/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			20		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.500	1.000	ND		
Aroclor-1221 (PCB-1221)	0.500	1.000	ND		
Aroclor-1232 (PCB-1232)	0.500	1.000	ND		
Aroclor-1242 (PCB-1242)	0.500	1.000	ND		
Aroclor-1248 (PCB-1248)	0.500	1.000	244		
Aroclor-1254 (PCB-1254)	0.500	1.000	37.6		
Aroclor-1260 (PCB-1260)	0.500	1.000	ND		
Aroclor-1262 (PCB-1262)	0.500	1.000	ND		
Aroclor-1268 (PCB-1268)	0.500	1.000	ND		
Our Lab I.D.			81420.25		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		0.0 s6		
Tetrachloro-m-xylene	30-150		106		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 19

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Duton	10. 030010-2				
Our Lab I.D.			81420.26	81420.27	81420.28	81420.29	81420.30
Client Sample I.D.			PC-029	PC-030	PC-031	PC-032	PC-033
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	04/28/2016
Date Prepared			05/06/2016	05/06/2016	05/06/2016	05/06/2016	05/06/2016
Preparation Method			3540C	3540C	3540C	3540C	3540C
Date Analyzed			05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016
Matrix			Solid	Solid	Solid	Solid	Solid
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			10	10	10	10	10
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	0.250	0.500	208	172	192	86.3	120
Aroclor-1254 (PCB-1254)	0.250	0.500	ND	22.5	ND	16.6	ND
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND	ND	ND	ND
Our Lab I.D.			81420.26	81420.27	81420.28	81420.29	81420.30
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		523 S6	114	83.4	689 S6	204 S6
Tetrachloro-m-xylene	30-150		132	92.1	58.6	111	75.6

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 20

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number Submitted Client
81420 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

Our Lab I.D.			81420.31	81420.32	81420.33	81420.34	
Client Sample I.D.			PC-034	PC-036	PC-037	PC-DUP-003	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/06/2016	05/06/2016	05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			05/11/2016	05/11/2016	05/12/2016	05/12/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			10	10	10	10	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.250	0.500	103	ND	ND	250	
Aroclor-1254 (PCB-1254)	0.250	0.500	ND	28.9	43.3	55.5	
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	ND	ND	26.7	
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND	ND	ND	
Our Lab I.D.			81420.31	81420.32	81420.33	81420.34	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		114	117	96.1	0.0 86	
Tetrachloro-m-xylene	30-150		108	95.0	96.5	307 S6	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **21**

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616; LCS: Blank; LCS Prepared: 05/06/2016; LCS Analyzed: 05/09/2016; Units: mg/Kg

	1.00									
	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.315	63.0	0.500	0.329	65.8	4.3	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.392	78.4	0.500	0.444	88.8	12.4	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	0.730	73.0	1.00	0.836	83.6	13.5	30-150	<20	
Tetrachloro-m-xylene	1.00	0.808	80.8	1.00	0.882	88.2	8.8	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 22

Project ID: 0349890 Project Name: ITT Site

666 E Dyer Rd.

Santa Ana, CA 92705

AETL Job Number	Submitted	Client
81420	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616-2; LCS: Blank; LCS Prepared: 05/06/2016; LCS Analyzed: 05/11/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.347	69.4	0.500	0.329	65.8	5.3	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.469	93.8	0.500	0.459	91.8	2.2	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	1.05	105	1.00	0.994	99.4	5.5	30-150	<20	
Tetrachloro-m-xylene	1.00	1.01	101	1.00	1.04	104	2.9	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet

Number of Pages 20

Date Received 04/29/2016 Date Reported 05/17/2016

Job Number	Order Date	Client
81421	04/29/2016	ERM

Project ID: 0349890 Project Name: ITT Site: ITT

> Enclosed please find results of analyses of 24 solid samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

Environmental Resources Management 777 Botelho Drive, Suite 260 • Walunt Creek, CA, 94596 • (925) 946-0455 • FAX (925) 946-9968

CHAIN OF CUSTODY RECORD

07201 <u>:</u>

J Page_

Report Andrews 1016,124,1252,1272 1246/1254/1260,1262,1248 Jason, Fernet a Crm, Com Report results in My/Ey
Report 3 Plaz REQUESTED PARAMETERS FIELD REMARKS 0 Jasan Fenet DATE TIME 4-28-16 1556 DATE TIME DATE TIME 30426 20 2808 Pelso **ERM REMARKS** OAO MATRIX ⋧⋞⊢⋓╓ RECEIVED BY RECEIVED BY RECEIVED BY OOZH a-sylline SAMPLING VOLUME (V/N) ICE 1556 1815 PROJECT NAME TIME TIME SEE REMARKS ١ PRESER 4/24/6 CHILLED SAMPLING (SIGNATURE) 4-19.16 Je 10 10 2 RECEIVING LABORATORY DATE DATE Scark Scark Sumpe Scarpe Scutt Secure Sc 10.95 Scrape Scrept REMARKS ON SAMPLE RECEIPT Note Grasso / Jasun Fernet / Dan Gentle CERAB CUSTODY SEALS SEALS INTACT COMP 05 = 1 31/12/14 200-900-2 14 12 016 150 VS DE- 124-005 412/1/ 170 4/28/16 1422 14/28/16 1529 552 4/1/2/16 TIME 0260 91/87/2007 - 78 4/23/16/1548 RELINGUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) SAMPLER: (PRINT NAME))//x1/h 91/82/1-00-7d DATE and Jim Leist PROJECT # 0349890 BOTTLE INTACT PC-DUP-ON PRESERVED 210-Jd 1-0-Ja AETL 0/0-10 520-1 SAMPLE I.D. PC-038

GOLD - PROJECT FILE

PINK - DATABASE MANAGER

CANARY - FIELD COPY

WHITE - LABORATORY COPY

Environmental Resources Management

CHAIN OF CUSTODY RECORD

NO: Nº 07892

of

Page_

777 Botelho Drive, Suite 260 @ Walunt Creek, CA, 94596 @ (925) 946-0455 @ FAX (925) 946-9968

Report Ancies 1016, 1221, 1232, 1242 1246, 1246, 1254, 1260, 1262, 1268 Jason, Pernet Derm. Com REQUESTED PARAMETERS Report Results in my/15 FIELD REMARKS 142 18/18 Report J flags SEND REPORT TO: Stendard 9551 11-10-1 TIME TIME DATE DATE Johse \$14 kg 69 5878 **ERM REMARKS** 5 A W MATRIX ≥ < ⊢ u c RECEIVED BY RECEIVED BY RECEIVED BY 0 0 OOZH argn 2. P A-ZEES SAMPLING (A/N) ICE 955)1116713 PROJECT NAME TIME 9-29-16 1815 SEE REMARKS) > ١ PRESER CHILLED SAMPLING (SIGNATURE) DATE DATE RECEIVING LABORATORY School DATE REMARKS ON SAMPLE RECEIPT GRAB CUSTODY SEALS
SEALS INTACT COMP Jasin Fernet IDN Garrille 750 (t/L) 170 155 TIME 1635 7691 331 1805 1825 0.84 RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) SAMPLER: (PRINT NAME) PC MICHIS 1 PUNIC DATE PROJECT # 0349840 BOTTLE INTACT and Jim Leist PRESERVED QC-050 アイナジーとう pro-16 SAMPLE I.D. PC-247 20-00 p (- oys PC-044 PC-24 かっつる

GOLD - PROJECT FILE

PINK - DATABASE MANAGER

CANARY - FIELD COPY

WHITE - LABORATORY COPY

Environmental Resources Management

CHAIN OF CUSTODY RECORD

07893 ë Ö

EQUESTED PARAMETERS FIELD REMARKS Page TIME DATE 70h5E १०१५ वि रक्षाप 777 Botelho Drive, Suite 260 @ Walunt Creek, CA. 94596 @ (925) 946-0455 @ FAX (925) 946-9968 5820 MATRIX шс RECEIVED BY \times PF OOZH SAMPLING (V/N) PROJECT NAME PRESER VATIVE 1 (SIGNATURE) SAMPLING RECEIVING LABORATORY Schape GRAB COMP Dason Firmet / Bur Beatle 1933 TIME SSX 1920 RELINQUISHED BY (SIGNATURE) ₹<u></u> 1856 1916 AETI Lebs 0349893 SAMPLER: (PRINT NAME) にに DATE PROJECT # SAMPLE I.D. 81-056 84-353 170-29 150-16 250-79 PC-053

CANARY - FIELD COPY WHITE - LABORATORY COPY

SEE REMARKS

CUSTODY SEALS SEALS INTACT

BOTTLE INTACT PRESERVED

REMARKS ON SAMPLE RECEIPT

PINK - DATABASE MANAGER

jason, ternet

SEND REPORT TO:

ERM REMARKS

3 erm. com GOLD - PROJECT FILE

DATE TIME REPORT THUSS

DATE TIME REPORT THUSS

DATE TIME STANDON OTAL

95517122-6

RECEIVED BY

Jam 15-1

DATE

RELINQUISHED BY (SIGNATURE)

RCEIVED BY

100 N

21-62-6

DATE

RELINQUISHED BY (SIGNATURE)

d 5 (b) > (

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet

Project ID: 0349890

Date Received 04/29/2016 Date Reported 05/17/2016

Job Number	Order Date	Client
81421	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 24 samples with the following specification on 04/29/2016.

Lab	ID	Sample ID	Sample Date	Matrix	Quantity Of	Containers
81421.0	01	PC-005-DUP	04/28/2016	Solid	1	
81421.0	02	PC-004-DUP	04/28/2016	Solid	1	
81421.0	03	PC-DUP-006	04/28/2016	Solid	1	
81421.0	04	PC-DUP-004	04/28/2016	Solid	1	
81421.0	05	PC-DUP-005	04/28/2016	Solid	1	
81421.0	06	PC-038	04/28/2016	Solid	1	
81421.0	07	PC-039	04/28/2016	Solid	1	
81421.0	08	PC-040	04/28/2016	Solid	1	
81421.0	09	PC-041	04/28/2016	Solid	1	
81421.1	10	PC-042	04/28/2016	Solid	3	
81421.1	11	PC-043	04/28/2016	Solid	1	
81421.1	12	PC-044	04/28/2016	Solid	1	
81421.1	13	PC-045	04/28/2016	Solid	1	
81421.1	14	PC-046	04/28/2016	Solid	1	
81421.1	15	PC-047	04/28/2016	Solid	1	
81421.1	16	PC-048	04/28/2016	Solid	1	
81421.1	17	PC-049	04/28/2016	Solid	1	
81421.1	18	PC-050	04/28/2016	Solid	1	
81421.1	19	PC-051	04/28/2016	Solid	1	
81421.2	20	PC-052	04/28/2016	Solid	1	
81421.2	21	PC-053	04/28/2016	Solid	1	
81421.2	22	PC-054	04/28/2016	Solid	1	
81421.2	23	PC-055	04/28/2016	Solid	1	
81421.2	24	PC-056	04/28/2016	Solid	1	
М	Method	^ Submethod	Req Da	te Priority TAT	Units	

(8082) ^ MG/KG 05/06/2016 Normal mg/Kg

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

ERM-West, Inc.

2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attention: Jason Fernet Project ID: 0349890

Date Received 04/29/2016
Date Reported 05/17/2016

Job Number	Order Date	Client
81421	04/29/2016	ERM

CERTIFICATE OF ANALYSIS CASE NARRATIVE

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 2

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Dateir i	10. 050616-2		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/11/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		95.2		
Tetrachloro-m-xylene	30-150		104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 3

Project ID: 0349890 Project Name: ITT ITT

AETL Job Number Submitted Client
81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616-2

Our Lab I.D.			81421.01	81421.02	81421.03	81421.04	
Client Sample I.D.			PC-005-DUP	PC-004-DUP	PC-DUP-006	PC-DUP-004	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/06/2016	05/06/2016	05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	3540C	3540C	
Date Analyzed			05/12/2016	05/12/2016	05/12/2016	05/12/2016	
Matrix			Solid	Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			5	5	5	5	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.125	0.250	ND	ND	ND	15.9	
Aroclor-1254 (PCB-1254)	0.125	0.250	11.8	ND	11.1	5.52	
Aroclor-1260 (PCB-1260)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.125	0.250	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.125	0.250	ND	ND	ND	ND	

Comment(s):

81421.02: Analyzed under dilution due to matrix interference

61421.02. Thaify, ea under anunon and to mains interference							
Our Lab I.D.		81421.01	81421.02	81421.03	81421.04		
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	109	103	81.3	84.0		
Tetrachloro-m-xylene	30-150	73.3	1140 s6	51.5	135		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 4

Project ID: 0349890 Project Name: ITT

TT			

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daton i	10. 030010-3		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/12/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	ND		
Aroclor-1254 (PCB-1254)	0.025	0.050	ND		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		93.2		
Tetrachloro-m-xylene	30-150		77.9		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 5

Project ID: 0349890 Project Name: ITT

TT			

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	No: 050616-3		
Our Lab I.D.			81421.05		
Client Sample I.D.			PC-DUP-005		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			8		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.200	0.400	ND		
Aroclor-1221 (PCB-1221)	0.200	0.400	ND		
Aroclor-1232 (PCB-1232)	0.200	0.400	ND		
Aroclor-1242 (PCB-1242)	0.200	0.400	ND		
Aroclor-1248 (PCB-1248)	0.200	0.400	32.8		
Aroclor-1254 (PCB-1254)	0.200	0.400	11.7		
Aroclor-1260 (PCB-1260)	0.200	0.400	ND		
Aroclor-1262 (PCB-1262)	0.200	0.400	ND		
Aroclor-1268 (PCB-1268)	0.200	0.400	ND		
Our Lab I.D.			81421.05		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		133		
Tetrachloro-m-xylene	30-150		95.5		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 6

Project ID: 0349890 Project Name: ITT

7100		
TT		

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Dateir i	NO. 030616-3		
Our Lab I.D.			81421.06		
Client Sample I.D.			PC-038		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/12/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.125	0.250	ND		
Aroclor-1221 (PCB-1221)	0.125	0.250	ND		
Aroclor-1232 (PCB-1232)	0.125	0.250	ND		
Aroclor-1242 (PCB-1242)	0.125	0.250	ND		
Aroclor-1248 (PCB-1248)	0.125	0.250	5.63		
Aroclor-1254 (PCB-1254)	0.125	0.250	7.85		
Aroclor-1260 (PCB-1260)	0.125	0.250	4.46		
Aroclor-1262 (PCB-1262)	0.125	0.250	ND		
Aroclor-1268 (PCB-1268)	0.125	0.250	ND		
Our Lab I.D.			81421.06		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		126		
Tetrachloro-m-xylene	30-150		98.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **7**

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daton i	10. 030010-3			
Our Lab I.D.			81421.07	81421.08		
Client Sample I.D.			PC-039	PC-040		
Date Sampled			04/28/2016	04/28/2016		
Date Prepared			05/06/2016	05/06/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/12/2016	05/12/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			10	10		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND		
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND		
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND		
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND		
Aroclor-1248 (PCB-1248)	0.250	0.500	5.45	17.4		
Aroclor-1254 (PCB-1254)	0.250	0.500	4.68	20.8		
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	4.65		
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND		
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND		
Our Lab I.D.			81421.07	81421.08		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		123	122		
Tetrachloro-m-xylene	30-150		78.0	129		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 8

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

Our Lab I.D.			81421.09		
Client Sample I.D.			PC-041		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			4		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.100	0.200	ND		
Aroclor-1221 (PCB-1221)	0.100	0.200	ND		
Aroclor-1232 (PCB-1232)	0.100	0.200	ND		
Aroclor-1242 (PCB-1242)	0.100	0.200	ND		
Aroclor-1248 (PCB-1248)	0.100	0.200	3.28		
Aroclor-1254 (PCB-1254)	0.100	0.200	ND		
Aroclor-1260 (PCB-1260)	0.100	0.200	ND		
Aroclor-1262 (PCB-1262)	0.100	0.200	ND		
Aroclor-1268 (PCB-1268)	0.100	0.200	ND		
Our Lab I.D.			81421.09		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		104		
Tetrachloro-m-xylene	30-150		120		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Sit

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 9

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Datoii i	140. 030010-3		
Our Lab I.D.			81421.10		
Client Sample I.D.			PC-042		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/12/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.250	0.500	ND		
Aroclor-1221 (PCB-1221)	0.250	0.500	ND		
Aroclor-1232 (PCB-1232)	0.250	0.500	ND		
Aroclor-1242 (PCB-1242)	0.250	0.500	ND		
Aroclor-1248 (PCB-1248)	0.250	0.500	12.3		
Aroclor-1254 (PCB-1254)	0.250	0.500	5.22		
Aroclor-1260 (PCB-1260)	0.250	0.500	ND		
Aroclor-1262 (PCB-1262)	0.250	0.500	ND		
Aroclor-1268 (PCB-1268)	0.250	0.500	ND		
Our Lab I.D.			81421.10		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		115		
Tetrachloro-m-xylene	30-150		75.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Sit

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 10

Project ID: 0349890 Project Name: ITT

TCE		
TT		

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QU Datoii i	10. 030010-3		
Our Lab I.D.			81421.11		
Client Sample I.D.			PC-043		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.025	0.050	ND		
Aroclor-1221 (PCB-1221)	0.025	0.050	ND		
Aroclor-1232 (PCB-1232)	0.025	0.050	ND		
Aroclor-1242 (PCB-1242)	0.025	0.050	ND		
Aroclor-1248 (PCB-1248)	0.025	0.050	1.26		
Aroclor-1254 (PCB-1254)	0.025	0.050	0.687		
Aroclor-1260 (PCB-1260)	0.025	0.050	ND		
Aroclor-1262 (PCB-1262)	0.025	0.050	ND		
Aroclor-1268 (PCB-1268)	0.025	0.050	ND		
Our Lab I.D.			81421.11		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		91.2		
Tetrachloro-m-xylene	30-150		105		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 11

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch	NO: U5U616-3		
Our Lab I.D.			81421.12		
Client Sample I.D.			PC-044		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			4		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.100	0.200	ND		
Aroclor-1221 (PCB-1221)	0.100	0.200	ND		
Aroclor-1232 (PCB-1232)	0.100	0.200	ND		
Aroclor-1242 (PCB-1242)	0.100	0.200	ND		
Aroclor-1248 (PCB-1248)	0.100	0.200	4.12		
Aroclor-1254 (PCB-1254)	0.100	0.200	3.17		
Aroclor-1260 (PCB-1260)	0.100	0.200	ND		
Aroclor-1262 (PCB-1262)	0.100	0.200	ND		
Aroclor-1268 (PCB-1268)	0.100	0.200	ND		
Our Lab I.D.			81421.12		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		72.0		
Tetrachloro-m-xylene	30-150		90.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By S:

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 12

Project ID: 0349890 Project Name: ITT

,100		
TT		

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Datoir i	NO. 030616-3		
Our Lab I.D.			81421.13		
Client Sample I.D.			PC-045		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/12/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.250	0.500	ND		
Aroclor-1221 (PCB-1221)	0.250	0.500	ND		
Aroclor-1232 (PCB-1232)	0.250	0.500	ND		
Aroclor-1242 (PCB-1242)	0.250	0.500	ND		
Aroclor-1248 (PCB-1248)	0.250	0.500	58.6		
Aroclor-1254 (PCB-1254)	0.250	0.500	54.0		
Aroclor-1260 (PCB-1260)	0.250	0.500	ND		
Aroclor-1262 (PCB-1262)	0.250	0.500	ND		
Aroclor-1268 (PCB-1268)	0.250	0.500	ND		
Our Lab I.D.			81421.13		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		171 S6		
Tetrachloro-m-xylene	30-150		79.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 13

Project ID: 0349890 Project Name: ITT

,100			
TT			

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Datoii i	10. 030010-3		
Our Lab I.D.			81421.14		
Client Sample I.D.			PC-046		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			4		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.100	0.200	ND		
Aroclor-1221 (PCB-1221)	0.100	0.200	ND		
Aroclor-1232 (PCB-1232)	0.100	0.200	ND		
Aroclor-1242 (PCB-1242)	0.100	0.200	ND		
Aroclor-1248 (PCB-1248)	0.100	0.200	9.41		
Aroclor-1254 (PCB-1254)	0.100	0.200	3.36		
Aroclor-1260 (PCB-1260)	0.100	0.200	ND		
Aroclor-1262 (PCB-1262)	0.100	0.200	ND		
Aroclor-1268 (PCB-1268)	0.100	0.200	ND		
Our Lab I.D.			81421.14		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		101		
Tetrachloro-m-xylene	30-150		77.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 14

Project ID: 0349890 Project Name: ITT

TT			

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		81421.15				
		PC-047				
		04/28/2016				
		05/06/2016				
		3540C				
		05/12/2016				
		Solid				
		mg/Kg				
		10				
MDL	PQL	Results				
0.250	0.500	ND				
0.250	0.500	ND				
0.250	0.500	ND				
0.250	0.500	ND				
0.250	0.500	86.8				
0.250	0.500	45.9				
0.250	0.500	ND				
0.250	0.500	ND				
0.250	0.500	ND				
		81421.15				
%Rec.Limit		% Rec.				
30-150		106				
30-150		106				
	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500 0.250 0.500	PC-047 04/28/2016 05/06/2016 3540C 05/12/2016 Solid mg/Kg 10 MDL PQL Results 0.250 0.500 ND	PC-047 04/28/2016 05/06/2016 3540C 05/12/2016 Solid mg/Kg 10 MDL PQL Results 0.250 0.500 ND	PC-047 04/28/2016 05/06/2016 3540C 05/12/2016 Solid mg/Kg 10 MDL PQL Results 0.250 0.500 ND	PC-047 04/28/2016 05/06/2016 3540C 05/12/2016 Solid mg/Kg 10 MDL PQL Results 0.250 0.500 ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 15

Project ID: 0349890 Project Name: ITT

Submitted Client AETL Job Number 04/29/2016 ERM 81421

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

O TILLID			0140146		
Our Lab I.D.			81421.16		
Client Sample I.D.			PC-048		
Date Sampled			04/28/2016		
Date Prepared			05/06/2016		
Preparation Method			3540C		
Date Analyzed			05/13/2016		
Matrix			Solid		
Units			mg/Kg		
Dilution Factor			8		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	0.200	0.400	ND		
Aroclor-1221 (PCB-1221)	0.200	0.400	ND		
Aroclor-1232 (PCB-1232)	0.200	0.400	ND		
Aroclor-1242 (PCB-1242)	0.200	0.400	ND		
Aroclor-1248 (PCB-1248)	0.200	0.400	19.0		
Aroclor-1254 (PCB-1254)	0.200	0.400	4.26		
Aroclor-1260 (PCB-1260)	0.200	0.400	ND		
Aroclor-1262 (PCB-1262)	0.200	0.400	ND		
Aroclor-1268 (PCB-1268)	0.200	0.400	ND		
Our Lab I.D.			81421.16		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		128		
Tetrachloro-m-xylene	30-150		51.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Site

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 16

Project ID: 0349890 Project Name: ITT

7100			
TT			

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		44				
Our Lab I.D.			81421.17	81421.18	81421.19	
Client Sample I.D.			PC-049	PC-050	PC-051	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/06/2016	05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			05/12/2016	05/12/2016	05/12/2016	
Matrix			Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			10	10	10	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.250	0.500	22.0	9.70	22.8	
Aroclor-1254 (PCB-1254)	0.250	0.500	ND	3.80	10.9	
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND	ND	
Our Lab I.D.			81421.17	81421.18	81421.19	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		91.6	72.4	127	
Tetrachloro-m-xylene	30-150		80.0	64.4	137	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Sit

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 17

Project ID: 0349890 Project Name: ITT

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QC Batch i	NO: U5U616-3			
Our Lab I.D.			81421.20	81421.21	81421.22	
Client Sample I.D.			PC-052	PC-053	PC-054	
Date Sampled			04/28/2016	04/28/2016	04/28/2016	
Date Prepared			05/06/2016	05/06/2016	05/06/2016	
Preparation Method			3540C	3540C	3540C	
Date Analyzed			05/13/2016	05/13/2016	05/13/2016	
Matrix			Solid	Solid	Solid	
Units			mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			2	2	2	
Analytes	MDL	PQL	Results	Results	Results	
Aroclor-1016 (PCB-1016)	0.050	0.100	ND	ND	ND	
Aroclor-1221 (PCB-1221)	0.050	0.100	ND	ND	ND	
Aroclor-1232 (PCB-1232)	0.050	0.100	ND	ND	ND	
Aroclor-1242 (PCB-1242)	0.050	0.100	ND	ND	ND	
Aroclor-1248 (PCB-1248)	0.050	0.100	1.62	0.800	4.31	
Aroclor-1254 (PCB-1254)	0.050	0.100	0.952	0.752	2.18	
Aroclor-1260 (PCB-1260)	0.050	0.100	ND	ND	ND	
Aroclor-1262 (PCB-1262)	0.050	0.100	ND	ND	ND	
Aroclor-1268 (PCB-1268)	0.050	0.100	ND	ND	ND	
Our Lab I.D.			81421.20	81421.21	81421.22	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		112	88.8	94.0	
Tetrachloro-m-xylene	30-150		120	72.0	111	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By Sit

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 18

Project ID: 0349890 Project Name: ITT

rce		
TT		

AETL Job Number Submitted Client 81421 04/29/2016 ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

		QO Daton i	10. 030010-3			
Our Lab I.D.			81421.23	81421.24		
Client Sample I.D.		PC-055	PC-056			
Date Sampled		04/28/2016	04/28/2016			
Date Prepared			05/06/2016	05/06/2016		
Preparation Method			3540C	3540C		
Date Analyzed			05/13/2016	05/12/2016		
Matrix			Solid	Solid		
Units			mg/Kg	mg/Kg		
Dilution Factor			10	10		
Analytes	MDL	PQL	Results	Results		
Aroclor-1016 (PCB-1016)	0.250	0.500	ND	ND		
Aroclor-1221 (PCB-1221)	0.250	0.500	ND	ND		
Aroclor-1232 (PCB-1232)	0.250	0.500	ND	ND		
Aroclor-1242 (PCB-1242)	0.250	0.500	ND	ND		
Aroclor-1248 (PCB-1248)	0.250	0.500	11.6	52.0		
Aroclor-1254 (PCB-1254)	0.250	0.500	7.38	55.6		
Aroclor-1260 (PCB-1260)	0.250	0.500	ND	ND		
Aroclor-1262 (PCB-1262)	0.250	0.500	ND	ND		
Aroclor-1268 (PCB-1268)	0.250	0.500	ND	ND		
Our Lab I.D.			81421.23	81421.24		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Decachlorobiphenyl	30-150		129	102		
Tetrachloro-m-xylene	30-150		73.2	75.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: 19

Project ID: 0349890 Project Name: ITT Site ITT

AETL Job Number	Submitted	Client
81421	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616-2; LCS: Blank; LCS Prepared: 05/06/2016; LCS Analyzed: 05/11/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.347	69.4	0.500	0.329	65.8	5.3	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.469	93.8	0.500	0.459	91.8	2.2	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	1.05	105	1.00	0.994	99.4	5.5	30-150	<20	
Tetrachloro-m-xylene	1.00	1.01	101	1.00	1.04	104	2.9	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

ERM-West, Inc. 2875 Michelle Drive

Suite 200

Irvine, CA 92606-

Telephone: (949)623-4700 Attn: Jason Fernet Page: **20**

Project ID: 0349890 Project Name: ITT Site ITT

AETL Job Number	Submitted	Client
81421	04/29/2016	ERM

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 050616-3; LCS: Blank; LCS Prepared: 05/06/2016; LCS Analyzed: 05/13/2016; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	0.500	0.301	60.2	0.500	0.409	81.8	30.4	75-125	<20	
Aroclor-1260 (PCB-1260)	0.500	0.439	87.8	0.500	0.530	106	18.8	75-125	<20	
Surrogates										
Decachlorobiphenyl	1.00	1.03	103	1.00	1.04	104	<1	30-150	<20	
Tetrachloro-m-xylene	1.00	1.04	104	1.00	1.05	105	<1	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

APPENDIX E TSCA CAP TECHNICAL SPECIFICATIONS

SPECIFICATIONS \mathtt{ITT}

PROJECT TABLE OF CONTENTS

DIVISION 32 - EXTERIOR IMPROVEMENTS

32 11 16.16 CRUSHED MISCELLANEOUS BASE COURSE FOR FLEXIBLE PAVING 32 12 16 HOT-MIX ASPHALT (HMA) FOR ROADS

-- End of Project Table of Contents --

SECTION 32 11 16.16

CRUSHED MISCELLANEOUS BASE COURSE FOR FLEXIBLE PAVING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C117	(2013) Standard Test Method for Materials Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C131/C131M	(2014) Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C136/C136M	(2014) Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
ASTM D1556/D1556M	(2015) Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method
ASTM D1557	(2012; E 2015) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3) (2700 kN-m/m3)
ASTM D2940/D2940M	(2015) Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports
ASTM D6155	(2015) Nontraditional Coarse Aggregate for Bituminous Paving Mixtures
ASTM D6938	(2015) Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
ASTM D698	(2012; E 2014; E 2015) Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/cu. ft. (600 kN-m/cu. m.))
ASTM D75/D75M	(2014) Standard Practice for Sampling Aggregates

U.S. GREEN BUILDING COUNCIL (USGBC)

LEED NC

(2009) Leadership in Energy and Environmental Design(tm) New Construction Rating System

1.2 SUBMITTALS

Client approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval.W Submit the following:

SD-03 Product Data

Materials; (LEED NC)

Documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

Local/Regional Materials; (LEED NC)

Documentation indicating distance between manufacturing facility and the project site. Indicate distance of raw material origin from the project site. Indicate relative dollar value of local/regional materials to total dollar value of products included in project.

SD-05 Design Data

Gradation curve

SD-06 Test Reports

Bearing ratio

Liquid limit

Plasticity index

Dry weight of slag

Percentage of wear

Gradation tests

Density tests

SD-07 Certificates

Source

Location and name.

1.3 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to the site and store aggregates in a manner that will prevent segregation and contamination.

1.4 CONSTRUCTION EQUIPMENT

Subject to approval of the Client, special equipment as dictated by local conditions may be used. Calibrated equipment, such as scales, batching equipment, spreaders, and other similar equipment, shall have been calibrated by a calibration laboratory approved by the Client.

1.5 ENVIRONMENTAL REQUIREMENTS

Do not construct course when atmospheric temperature is below 35 degrees F or when weather conditions could detrimentally affect quality of finished course. When temperature falls below 35 degrees F, protect areas of completed course against freezing.

PART 2 PRODUCTS

2.1 MATERIALS

ASTM D2940/D2940M, except as modified herein. Material shall consist of natural, processed or blends of waste concrete, masonry, cement, tile, or other waste material from on-site work as specified; rock, crushed concrete, concrete block, or crushed slag from off-site grading or demolition work; recycled porcelain, concrete, stone, or other recycled material complying with ASTM D6155; gravel; stone; slag; chert; caliche; limerock; coral; shell; quarry and mine waste; sand; or screenings; and soil or other similar binding or filler material. Obtain materials from sources approved by the Client. Preliminary approval of pits shall not mean that material found in the deposit will be acceptable. Maximum dimensions of material particles shall not be greater than two-thirds the compacted thickness of the layer in which it is to be placed. Coarse aggregate shall have a percentage of wear of not more than 40 as determined by ASTM C131/C131M.

Material shall have a R-value of at least 78 as determined by ASTM D2844 or California Test Method 301; material shall have a minimum sand equivalent test value of 21 when tested in accordance with California Test Method 217; compact the specimen in accordance with ASTM D1557, Method B, C, or D. Material passing the No. 40 sieve shall have a liquid limit of not more than 25 and a plasticity index of not more than 5 in accordance with ASTM D4318. Gradation of the final composite mixture shall conform to the following size and shall be the basis of the gradation curve:

Sieve Size (Square Openings)	Design Range (Percent Passing)
2 inch	
1 ½ inch	
1 inch	100
¾ inch	90-100
No. 4	40-70
No. 30	12-40
No. 200	3-15

2.2 SOURCE QUALITY CONTROL

Prior to production and delivery of aggregates, take at least one initial sample in accordance with ASTM D75/D75M. Collect each sample by taking three incremental samples at random from source material to make a composite sample of not less than 50 pounds. Repeat sampling procedure when source of material is changed or when deficiencies or variations from

specified grading of materials are found in testing.

PART 3 EXECUTION

3.1 GRADE CONTROL

Provide line and grade stakes for control. Place grade stakes in lanes parallel to centerline of areas to be paved and space for string lining or other control methods.

3.2 PLACING AND MIXING

Clean underlying surface of foreign substances and ensure proper compaction and smoothness before placement of course. Verify subsoils have a permeability between 0.5 and 3.0 inches per hour. Recondition, reshape, and recompact areas damaged by freezing, rainfall, or other weather conditions. Mix and place materials to obtain a uniform course for the water content and gradation specified. Construct course in one or more layers. Make each layer between 3 and 8 inches in compacted thickness.

3.3 COMPACTING AND FINISHING

Compact each layer to at least 100 percent of the maximum laboratory density determined in accordance with ASTM D1557 for areas subject to heavy vehicular traffic. Compact each layer to at least 95 percent Standard Proctor Density per ASTM D698 for pedestrian areas. Compact material inaccessible to rolling equipment by mechanical tamping. Finish surface of the layer by blading and rolling. Blade, roll, and tamp until surface is smooth and free from waves and irregularities. Aerate material excessively moistened by rain during construction. Aerate using blade graders, harrows, or other equipment until the moisture content is that needed to obtain specified density. Place and compact earth at edges of course for at least one foot of the shoulder.

3.4 FIELD QUALITY CONTROL

3.4.1 Sampling During Construction

Take one random sample of each 1000cubic yards of material placed, but not less than one random sample per day's run. Take samples in accordance with ASTM D75/D75M.

3.4.2 Testing

3.4.2.1 Material

Make gradation tests from each sample in accordance with ASTM C136/C136M. Determine material passing the No. 200 sieve in accordance with ASTM C117.

3.4.2.2 Smoothness Test

Test with a 10 foot straightedge applied parallel with and at right angles to centerline of the rolled area. Correct surface deviations in excess of 3/8 inch by loosening, adding or removing material, reshaping, watering, and compacting. When course is constructed in more than one layer, smoothness requirements apply only to the top layer.

3.4.2.3 Field Density Tests

ASTM D1556/D1556M or ASTM D6938. Take one field density test for each 500 square feet of each layer of course. When using ASTM D6938 to test field compaction densities, verify the results of the tests by performing one test per day using ASTM D1556/D1556M at locations previously tested by ASTM D6938 and one additional test using ASTM D1556/D1556M for every ten tests performed at locations previously tested by ASTM D6938 .

3.4.2.4 Laboratory Density Tests

ASTM D1557, Method B, C, or D, for all material.

3.4.2.5 Thickness Test

Determine thickness of course from test holes not less than 3 inches in diameter. Obtain a thickness test for each 1,000 square feet of course. Where course deficiency is more than 1/2 inch, correct by scarifying, adding mixture of proper gradation, reblading, and recompacting. Where the measured thickness exceeds the indicated thickness by more than 1/2 inch, consider the measured thickness as the indicated or specified thickness plus 1/2 inch for determining the average. The average thickness shall be the average of the depth measurements and shall not underrun the thickness shown by more than 1/4 inch.

3.5 MAINTENANCE

After construction is completed, protect and maintain all areas of course against detrimental effects. Maintenance includes drainage, rolling, shaping, watering, or other action required to maintain course in proper condition. Maintain sufficient moisture by light sprinkling with water at the surface to prevent a dusty condition.

-- End of Section --

SECTION 32 12 16

HOT-MIX ASPHALT (HMA) FOR ROADS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 156 (2013) Standard Specification for Requirements for Mixing Plants for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures

AASHTO M 320 (2010; 2015) Standard Specification for Performance-Graded Asphalt Binder

ASPHALT INSTITUTE (AI)

AI MS-2 (2015) Asphalt Mix Design Methods

AI MS-22 (2001; 2nd Ed) Construction of Hot-Mix

Asphalt Pavements

AI SP-2 (2001; 3rd Ed) Superpave Mix Design

ASTM INTERNATIONAL (ASTM)

ASTM C117 (2013) Standard Test Method for Materials

Finer than 75-um (No. 200) Sieve in

Mineral Aggregates by Washing

ASTM C1252 (2006) Standard Test Methods for

Uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface

Texture, and Grading)

ASTM C127 (2015) Standard Test Method for Density,

Relative Density (Specific Gravity), and

Absorption of Coarse Aggregate

ASTM C128 (2015) Standard Test Method for Density,

Relative Density (Specific Gravity), and

Absorption of Fine Aggregate

ASTM C131/C131M (2014) Standard Test Method for Resistance

to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the

Los Angeles Machine

ASTM C136/C136M	(2014) Standard Test Method for Sieve
	Analysis of Fine and Coarse Aggregates
ASTM C142/C142M	(2010) Standard Test Method for Clay Lumps and Friable Particles in Aggregates
ASTM C29/C29M	(2009) Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate
ASTM C566	(2013) Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying
ASTM C88	(2013) Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM D140/D140M	(2015) Standard Practice for Sampling Bituminous Materials
ASTM D1461	(2011) Moisture or Volatile Distillates in Bituminous Paving Mixtures
ASTM D2172/D2172M	(2011) Quantitative Extraction of Bitumen from Bituminous Paving Mixtures
ASTM D2419	(2014) Sand Equivalent Value of Soils and Fine Aggregate
ASTM D242/D242M	(2009; R 2014) Mineral Filler for Bituminous Paving Mixtures
ASTM D2489/D2489M	(2008) Estimating Degree of Particle Coating of Bituminous-Aggregate Mixtures
ASTM D2950/D2950M	(2014) Density of Bituminous Concrete in Place by Nuclear Methods
ASTM D3665	(2012) Random Sampling of Construction Materials
ASTM D3666	(2013) Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials
ASTM D4125/D4125M	(2010) Asphalt Content of Bituminous Mixtures by the Nuclear Method
ASTM D4791	(2010) Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM D4867/D4867M	(2009; R 2014) Effect of Moisture on Asphalt Concrete Paving Mixtures
ASTM D5444	(2015) Mechanical Size Analysis of Extracted Aggregate

ASTM D6307 (2010) Asphalt Content of Hot Mix Asphalt

by Ignition Method

ASTM D6925 (2014) Standard Test Method for

Preparation and Determination of the Relative Density of Hot Mix Asphalt (HMA)

Specimens by Means of the Superpave

Gyratory Compactor

ASTM D6926 (2010) Standard Practice for Preparation

of Bituminous Specimens Using Marshall

Apparatus

ASTM D6927 (2015) Standard Test Method for Marshall

Stability and Flow of Bituminous Mixtures

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS)

CTM 526 (2002) Operation of California

Profilograph and Evaluation of Profiles

U.S. ARMY CORPS OF ENGINEERS (USACE)

COE CRD-C 171 (1995) Standard Test Method for

Determining Percentage of Crushed

Particles in Aggregate

1.2 SUBMITTALS

Client approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following:

SD-03 Product Data

Mix Design;

Quality Control;

Material Acceptance;

Percent Payment;

SD-04 Samples

Asphalt Cement Binder

Aggregates

SD-06 Test Reports

Aggregates;

QC Monitoring

SD-07 Certificates

Asphalt Cement Binder;

Testing Laboratory

1.3 ENVIRONMENTAL REQUIREMENTS

Do not place the hot-mix asphalt upon a wet surface or when the surface temperature of the underlying course is less than specified in Table 3. The temperature requirements may be waived by the Client, if requested; however, meet all other requirements, including compaction.

Table 3. Surface Temperature L	imitations of Underlying Course
Mat Thickness, inches	Degrees F
3 or greater	40
Less than 3	45

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Perform the work consisting of pavement courses composed of mineral aggregate and asphalt material heated and mixed in a central mixing plant and placed on a prepared course. HMA designed and constructed in accordance with this section shall conform to the lines, grades, thicknesses, and typical cross sections indicated. Construct each course to the depth, section, or elevation required by the drawings and roll, finish, and approve it before the placement of the next course.

2.1.1 Asphalt Mixing Plant

Plants used for the preparation of hot-mix asphalt shall conform to the requirements of AASHTO M 156 with the following changes:

2.1.1.1 Truck Scales

Weigh the asphalt mixture on approved, certified scales at the Contractor's expense. Inspect and seal scales at least annually by an approved calibration laboratory.

2.1.1.2 Testing Facilities

Provide laboratory facilities at the plant for the use of the Contractor's quality control testing.

2.1.1.3 Inspection of Plant

Provide the Client with access at all times, to all areas of the plant for checking adequacy of equipment; inspecting operation of the plant; verifying weights, proportions, and material properties; checking the temperatures maintained in the preparation of the mixtures and for taking samples. Provide assistance as requested, for the Client to procure any desired samples.

2.1.1.4 Storage bins

Use of storage bins for temporary storage of hot-mix asphalt will be

permitted as follows:

a. The asphalt mixture may be stored in non-insulated storage bins for a period of time not exceeding 3 hours.

b. The asphalt mixture may be stored in insulated storage bins for a period of time not exceeding 8 hours. The mix drawn from bins shall meet the same requirements as mix loaded directly into trucks.

2.1.2 Hauling Equipment

Provide trucks for hauling hot-mix asphalt having tight, clean, and smooth metal beds. To prevent the mixture from adhering to them, the truck beds shall be lightly coated with a minimum amount of paraffin oil, lime solution, or other approved material. Petroleum based products shall not be used as a release agent. Each truck shall have a suitable cover to protect the mixture from adverse weather. When necessary to ensure that the mixture will be delivered to the site at the specified temperature, truck beds shall be insulated or heated and covers (tarps) shall be securely fastened.

2.1.3 Asphalt Pavers

Provide asphalt pavers which are self-propelled, with an activated screed, heated as necessary, and capable of spreading and finishing courses of hot-mix asphalt which will meet the specified thickness, smoothness, and grade. The paver shall have sufficient power to propel itself and the hauling equipment without adversely affecting the finished surface.

2.1.3.1 Receiving Hopper

Provide paver with a receiving hopper of sufficient capacity to permit a uniform spreading operation and equipped with a distribution system to place the mixture uniformly in front of the screed without segregation. The screed shall effectively produce a finished surface of the required evenness and texture without tearing, shoving, or gouging the mixture.

2.1.3.2 Automatic Grade Controls

Equip the paver with a control system capable of automatically maintaining the specified screed elevation. The control system shall be automatically actuated from either a reference line and/or through a system of mechanical sensors or sensor-directed mechanisms or devices which will maintain the paver screed at a predetermined transverse slope and at the proper elevation to obtain the required surface. The transverse slope controller shall be capable of maintaining the screed at the desired slope within plus or minus 0.1 percent. A transverse slope controller shall not be used to control grade. Provide controls capable of working in conjunction with any of the following attachments:

- a. Ski-type device of not less than 30 feet in length.
- b. Taut stringline set to grade.
- c. Short ski or shoe for joint matching.
- d. Laser control.

2.1.4 Rollers

Rollers shall be in good condition and shall be operated at slow speeds to avoid displacement of the asphalt mixture. The number, type, and weight of rollers shall be sufficient to compact the mixture to the required density while it is still in a workable condition. Do not use equipment which causes excessive crushing of the aggregate.

2.2 AGGREGATES

Provide aggregates consisting of crushed stone, crushed gravel, crushed slag, screenings, natural sand and mineral filler, as required. Submit sufficient materials to produce 200 lb of blended mixture for mix design verification. The portion of material retained on the No. 4 sieve is coarse aggregate. The portion of material passing the No. 4 sieve and retained on the No. 200 sieve is fine aggregate. The portion passing the No. 200 sieve is defined as mineral filler. Submit all aggregate test results and samples to the Client at least 14 days prior to start of construction.

2.2.1 Coarse Aggregate

Provide coarse aggregate consisting of sound, tough, durable particles, free from films of material that would prevent thorough coating and bonding with the asphalt material and free from organic matter and other deleterious substances. All individual coarse aggregate sources shall meet the following requirements:

- a. The percentage of loss shall not be greater than 40 percent after 500 revolutions when tested in accordance with ASTM C131/C131M.
- b. The percentage of loss shall not be greater than 18 percent after five cycles when tested in accordance with ASTM C88 using magnesium sulfate or 12 percent when using sodium sulfate.
- c. At least 75 percent by weight of coarse aggregate shall have at least two or more fractured faces when tested in accordance with COE CRD-C 171. Fractured faces shall be produced by crushing.
- d. The particle shape shall be essentially cubical and the aggregate shall not contain more than 20 percent percent, by weight, of flat and elongated particles (3:1 ratio of maximum to minimum) when tested in accordance with ASTM D4791.
- e. Slag shall be air-cooled, blast furnace slag, with a compacted weight of not less than 75 lb/cu ft when tested in accordance with ASTM C29/C29M.
- f. Clay lumps and friable particles shall not exceed 0.3 percent, by weight, when tested in accordance with ASTM C142/C142M.

2.2.2 Fine Aggregate

Fine aggregate shall consist of clean, sound, tough, durable particles free from coatings of clay, silt, or any objectionable material and containing no clay balls.

a. All individual fine aggregate sources shall have a sand equivalent value not less than 45 when tested in accordance with ASTM D2419.

b. The fine aggregate portion of the blended aggregate shall have an uncompacted void content not less than 45.0 percent when tested in accordance with ASTM C1252 Method A.

- c. The quantity of natural sand (noncrushed material) added to the aggregate blend shall not exceed 25 percent by weight of total aggregate.
- d. Clay lumps and friable particles shall not exceed 0.3 percent, by weight, when tested in accordance with ASTM C142/C142M

2.2.3 Mineral Filler

Mineral filler shall be nonplastic material meeting the requirements of ASTM D242/D242M.

2.2.4 Aggregate Gradation

The combined aggregate gradation shall conform to gradations specified in Table 4, when tested in accordance with ASTM C136/C136M and ASTM C117, and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve or vice versa, but grade uniformly from coarse to fine.

Table 4. Aggregate Gradations

Sieve Size,inch	Percent Passing			
1				
3/4	100			
1/2	95-100			
3/8	75-90			
No. 4	51-65			
No. 8	35-50			
No. 16				
No. 30	20-30			
No. 200	3-7			

2.3 ASPHALT CEMENT BINDER

Submit a 5 gallon sample for mix design verification. Asphalt cement binder shall conform to AASHTO M 320 Test data indicating grade certification shall be provided by the supplier at the time of delivery of each load to the mix plant. Submit copies of these certifications to the Client. The supplier is defined as the last source of any modification to the binder. The Client may sample and test the binder at the mix plant at any time before or during mix production. Obtain samples for this verification testing in accordance with ASTM D140/D140M and in the presence of the Client. Furnish these samples to the Client for the verification testing, which shall be at no cost to the Contractor. Submit samples of the asphalt cement specified for approval not less than 14 days before start of the test section. Submit copies of certified test data, amount, type and description of any modifiers blended into the asphalt cement binder.

2.4 MIX DESIGN

a. Develop the mix design. The asphalt mix shall be composed of a mixture of well-graded aggregate, mineral filler if required, and asphalt material. The aggregate fractions shall be sized, handled in separate size groups, and combined in such proportions that the

resulting mixture meets the grading requirements of the job mix formula (JMF). Submit proposed JMF; do not produce hot-mix asphalt for payment until a JMF has been approved. The hot-mix asphalt shall be designed in accordance with Marshall (MS-02), Superpave (SP-2), or Hveem (MS-02) procedures and the criteria shown in Table 5. Use the hand-held hammer to compact the specimens for Marshall mix design. If the Tensile Strength Ratio (TSR) of the composite mixture, as determined by ASTM D4867/D4867M is less than 75, the aggregates shall be rejected or the asphalt mixture treated with an approved anti-stripping agent. The amount of anti-stripping agent added shall be sufficient to produce a TSR of not less than 75. Provide an antistrip agent, if required, at no additional cost. Sufficient materials to produce 200 pound of blended mixture shall be provided to the Client for verification of mix design at least 14 days prior to construction of test section.

- b. At the option of the Contractor, a currently used DOT Superpave hot mix may be used in lieu of developing a Marshall hot mix design as described herein. Design the Superpave volumetric mix in accordance with AI SP-2 and ASTM D6925. The nominal maximum aggregate size (NMAS) shall be 1-1/2. Other DOT hot mix design methods (Hveem, etc.) may be suitable, as determined by the Client. The number of compaction gyrations, Ndes, shall be based on a design traffic of 3 equivalent single axle loads (EASLs).
- c. Design Superpave mixes with the number of gyrations specified in Table 5, unless the DOT option is chosen.

2.4.1 JMF Requirements

Submit in writing the job mix formula for approval at least 14 days prior to the start of the test section including as a minimum:

- a. Percent passing each sieve size.
- b. Percent of asphalt cement.
- c. Percent of each aggregate and mineral filler to be used.
- d. Asphalt viscosity grade, penetration grade, or performance grade.
- e. Number of blows of hand-held hammer per side of molded specimen. (NA for Superpave)
- f. Number of gyrations of Superpave gyratory compactor, (NA for Marshall mix design)
- g. Laboratory mixing temperature.
- h. Lab compaction temperature.
- i. Temperature-viscosity relationship of the asphalt cement.
- j. Plot of the combined gradation on the 0.45 power gradation chart, stating the nominal maximum size.
- k. Graphical plots of stability (NA for Superpave), flow (NA for Superpave), air voids, voids in the mineral aggregate, and unit weight versus asphalt content as shown in AI MS-2.

- 1. Specific gravity and absorption of each aggregate.
- m. Percent natural sand.
- n. Percent particles with 2 or more fractured faces (in coarse aggregate).
- o. Fine aggregate angularity.
- p. Percent flat or elongated particles (in coarse aggregate).
- q. Tensile Strength Ratio(TSR).
- r. Antistrip agent (if required) and amount.
- s. List of all modifiers and amount.
- t. Correlation of hand-held hammer with mechanical hammer (NA for Superpave).
- u. Percentage and properties (asphalt content, binder properties, and aggregate properties) of reclaimed asphalt pavement (RAP) in accordance with paragraph RECYCLED HOT-MIX ASPHALT, if RAP is used.

Table 5. Mix Design Cr	iteria
Test Property	75 Blows or Mix Gyrations
Stability, pounds, minimum (NA for Superpave)	*1800
Flow, 0.01 inch, (NA for Superpave)	8-16
Air voids, percent	3-5
Percent Voids in mineral aggregate (VMA),(minimum)	
Gradation 1	13.0
Gradation 2	14.3
Gradation 3	15.0
TSR, minimum percent	75

^{*} This is a minimum requirement. The average during construction shall be significantly higher than this number to ensure compliance with the specifications.

^{**} Calculate VMA in accordance with AI MS-2, based on ASTM C127 and ASTM C128 bulk specific gravity for the aggregate.

2.4.2 Adjustments to Field JMF

Keep the Laboratory JMF for each mixture in effect until a new formula is approved in writing by the Client. Should a change in sources of any materials be made, perform a new laboratory jmf design and a new JMF approved before the new material is used. The Contractor will be allowed to adjust the Laboratory JMF within the limits specified below to optimize mix volumetric properties with the approval of the Client. Adjustments to the Laboratory JMF shall be applied to the field (plant) established JMF and limited to those values as shown. Adjustments shall be targeted to produce or nearly produce 4 percent voids total mix (VTM).

TABLE 6. Field (Plant) Established JMF Tolerances			
Sieves	Adjustments (plus or minus), percent		
1/2 inch	3		
No. 4	3		
No. 8	3		
No. 200	1		
Binder Content	0.4		

If adjustments are needed that exceed these limits, develop a new mix design. Tolerances given above may permit the aggregate grading to be outside the limits shown in Table 4; while not desirable, this is acceptable, except for the No. 200 sieve, which shall remain within the aggregate grading of Table 4.

2.5 RECYCLED HOT MIX ASPHALT

Recycled HMA shall consist of reclaimed asphalt pavement (RAP), coarse aggregate, fine aggregate, mineral filler, and asphalt cement to produce a consistent gradation and asphalt content and properties. When RAP is fed into the plant, the maximum RAP chunk size shall not exceed 2 inches. Design the recycled HMA mix using procedures contained in AI MS-2 and AI MS-22. The job mix shall meet the requirements of paragraph MIX DESIGN. The amount of RAP shall not exceed 30 percent.

2.5.1 RAP Aggregates and Asphalt Cement

The blend of aggregates used in the recycled mix shall meet the requirements of paragraph AGGREGATES. Establish the percentage of asphalt in the RAP for the mixture design according to ASTM D2172/D2172M or ASTM D6307 using the appropriate dust correction procedure.

PART 3 EXECUTION

3.1 PREPARATION OF ASPHALT BINDER MATERIAL

Heat the asphalt cement material avoiding local overheating and providing a continuous supply of the asphalt material to the mixer at a uniform temperature. The temperature of unmodified asphalts shall be no more than 325 degrees F when added to the aggregates.

3.2 PREPARATION OF MINERAL AGGREGATE

Heat and dry the aggregate for the mixture prior to mixing. No damage shall occur to the aggregates due to the maximum temperature and rate of heating used. The temperature of the aggregate and mineral filler shall not exceed 350 degrees F when the asphalt cement is added. The temperature shall not be lower than is required to obtain complete coating and uniform distribution on the aggregate particles and to provide a mixture of satisfactory workability.

3.3 PREPARATION OF HOT-MIX ASPHALT MIXTURE

The aggregates and the asphalt cement shall be weighed or metered and introduced into the mixer in the amount specified by the JMF. Mix the combined materials until the aggregate obtains a uniform coating of asphalt binder and is thoroughly distributed throughout the mixture. Wet mixing time shall be the shortest time that will produce a satisfactory mixture, but no less than 25 seconds for batch plants. Establish the wet mixing time for all plants based on the procedure for determining the percentage of coated particles described in ASTM D2489/D2489M, for each individual plant and for each type of aggregate used. The wet mixing time will be set to at least achieve 95 percent of coated particles. The moisture content of all hot-mix asphalt upon discharge from the plant shall not exceed 0.5 percent by total weight of mixture as measured by ASTM D1461.

3.4 PREPARATION OF THE UNDERLYING SURFACE

Immediately before placing the hot mix asphalt, clean the underlying course of dust and debris. Apply a prime coat and/or tack coat in accordance with the contract specifications.

3.5 TESTING LABORATORY

Submit certification of compliance and Plant Scale Calibration Certification. Use a laboratory to develop the JMF that meets the requirements of ASTM D3666. The Client will inspect the laboratory equipment and test procedures prior to the start of hot mix operations for conformance to ASTM D3666. The laboratory shall maintain the Corps certification for the duration of the project. A statement signed by the manager of the laboratory stating that it meets these requirements or clearly listing all deficiencies shall be submitted to the Client prior to the start of construction. The statement shall contain as a minimum:

- a. Qualifications of personnel; laboratory manager, supervising technician, and testing technicians.
- b. A listing of equipment to be used in developing the job mix.
- c. A copy of the laboratory's quality control system.
- d. Evidence of participation in the AASHTO Materials Reference Laboratory (AMRL) program.

3.6 TRANSPORTING AND PLACING

3.6.1 Transporting

Transport the hot-mix asphalt from the mixing plant to the site in clean, tight vehicles. Schedule deliveries so that placing and compacting of mixture is uniform with minimum stopping and starting of the paver. Provide adequate artificial lighting for night placements. Hauling over freshly placed material will not be permitted until the material has been compacted as specified, and allowed to cool to 140 degrees F. To deliver mix to the paver, use a material transfer vehicle operated to produce continuous forward motion of the paver.

3.6.2 Placing

Place and compact the mix at a temperature suitable for obtaining density, surface smoothness, and other specified requirements. Upon arrival, place the mixture to the full width by an asphalt paver; it shall be struck off in a uniform layer of such depth that, when the work is completed, it will have the required thickness and conform to the grade and contour indicated. Regulate the speed of the paver to eliminate pulling and tearing of the asphalt mat. Unless otherwise permitted, placement of the mixture shall begin along the centerline of a crowned section or on the high side of areas with a one-way slope. Place the mixture in consecutive adjacent strips having a minimum width of 10 feet. The longitudinal joint in one course shall offset the longitudinal joint in the course immediately below by at least 1 foot; however, the joint in the surface course shall be at the centerline of the pavement. Transverse joints in one course shall be offset by at least 10 feet from transverse joints in the previous course. Transverse joints in adjacent lanes shall be offset a minimum of 10 feet. On isolated areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the mixture may be spread and luted by hand tools.

3.7 COMPACTION OF MIXTURE

After placing, the mixture shall be thoroughly and uniformly compacted by rolling. Compact the surface as soon as possible without causing displacement, cracking or shoving. The sequence of rolling operations and the type of rollers used shall be at the discretion of the Contractor. The speed of the roller shall, at all times, be sufficiently slow to avoid displacement of the hot mixture and be effective in compaction. Any displacement occurring as a result of reversing the direction of the roller, or from any other cause, shall be corrected at once. Furnish sufficient rollers to handle the output of the plant. Continue rolling until the surface is of uniform texture, true to grade and cross section, and the required field density is obtained. To prevent adhesion of the mixture to the roller, keep the wheels properly moistened but excessive water will not be permitted. In areas not accessible to the roller, the mixture shall be thoroughly compacted with hand tampers. Any mixture that becomes loose and broken, mixed with dirt, contains check-cracking, or is in any way defective shall be removed full depth, replaced with fresh hot mixture and immediately compacted to conform to the surrounding area. This work shall be done at the Contractor's expense. Skin patching will not be allowed.

3.8 JOINTS

The formation of joints shall be performed ensuring a continuous bond

between the courses and to obtain the required density. All joints shall have the same texture as other sections of the course and meet the requirements for smoothness and grade.

3.8.1 Transverse Joints

Do not pass the roller over the unprotected end of the freshly laid mixture, except when necessary to form a transverse joint. When necessary to form a transverse joint, it shall be made by means of placing a bulkhead or by tapering the course. The tapered edge shall be cut back to its full depth and width on a straight line to expose a vertical face prior to placing material at the joint. Remove the cutback material from the project. In both methods, all contact surfaces shall be given a light tack coat of asphalt material before placing any fresh mixture against the joint.

3.8.2 Longitudinal Joints

Longitudinal joints which are irregular, damaged, uncompacted, cold (less than 175 degrees F at the time of placing adjacent lanes), or otherwise defective, shall be cut back a maximum of 3 inches from the top of the course with a cutting wheel to expose a clean, sound vertical surface for the full depth of the course. All cutback material shall be removed from the project. All contact surfaces shall be given a light tack coat of asphalt material prior to placing any fresh mixture against the joint. The Contractor will be allowed to use an alternate method if it can be demonstrated that density, smoothness, and texture can be met.

3.9 QUALITY CONTROL

3.9.1 General Quality Control Requirements

Develop and submit an approved Quality Control Plan. Submit aggregate and QC test results. Do not produce hot-mix asphalt for payment until the quality control plan has been approved addressing all elements which affect the quality of the pavement including, but not limited to:

- a. Mix Design
- b. Aggregate Grading
- c. Quality of Materials
- d. Stockpile Management
- e. Proportioning
- f. Mixing and Transportation
- g. Mixture Volumetrics
- h. Moisture Content of Mixtures
- i. Placing and Finishing
- j. Joints
- k. Compaction

1. Surface Smoothness

3.9.2 Testing Laboratory

Provide a fully equipped asphalt laboratory located at the plant or job site and meeting the pertinent requirements in ASTM D3666. Laboratory facilities shall be kept clean and all equipment maintained in proper working condition. The Client shall be permitted unrestricted access to inspect the Contractor's laboratory facility, to witness quality control activities, and to perform any check testing desired. The Client will advise the Contractor in writing of any noted deficiencies concerning the laboratory facility, equipment, supplies, or testing personnel and procedures. When the deficiencies are serious enough to adversely affect test results, the incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are corrected.

3.9.3 Quality Control Testing

Perform all quality control tests applicable to these specifications and as set forth in the Quality Control Program. The testing program shall include, but shall not be limited to, tests for the control of asphalt content, aggregate gradation, temperatures, aggregate moisture, moisture in the asphalt mixture, laboratory air voids, stability (NA for Superpave), flow (NA for Superpave), in-place density, grade and smoothness. Develop a Quality Control Testing Plan as part of the Quality Control Program.

3.9.3.1 Asphalt Content

A minimum of two tests to determine asphalt content will be performed per lot by one of the following methods: the extraction method in accordance with ASTM D2172/D2172M, Method A or B, the ignition method in accordance with ASTM D6307, or the nuclear method in accordance with ASTM D4125/D4125M. Calibrate the ignition oven or the nuclear gauge for the specific mix being used. For the extraction method, determine the weight of ash, as described in ASTM D2172/D2172M, as part of the first extraction test performed at the beginning of plant production; and as part of every tenth extraction test performed thereafter, for the duration of plant production. The last weight of ash value obtained shall be used in the calculation of the asphalt content for the mixture.

3.9.3.2 Gradation

Determine aggregate gradations a minimum of twice per lot from mechanical analysis of recovered aggregate in accordance with ASTM D5444. When asphalt content is determined by the ignition oven or nuclear method, aggregate gradation shall be determined from hot bin samples on batch plants, or from the cold feed on drum mix plants. For batch plants, test aggregates in accordance with ASTM C136/C136M using actual batch weights to determine the combined aggregate gradation of the mixture.

3.9.3.3 Temperatures

Check temperatures at least four times per lot, at necessary locations, to determine the temperature at the dryer, the asphalt cement in the storage tank, the asphalt mixture at the plant, and the asphalt mixture at the job site.

3.9.3.4 Aggregate Moisture

Determine the moisture content of aggregate used for production a minimum of once per lot in accordance with ASTM C566.

3.9.3.5 Moisture Content of Mixture

Determine the moisture content of the mixture at least once per lot in accordance with ASTM D1461 or an approved alternate procedure.

3.9.3.6 Laboratory Air Voids, Marshall Stability and Flow

Take mixture samples at least four times per lot compacted into specimens, using 75 blows per side with the hand-held Marshall hammer as described in ASTM D6926. When the Superpave gyratory compactor is used, mixes will be compacted to 75 gyrations in accordance with ASTM D6925. Hot-mix provided under the DOT Superpave option shall be compacted in accordance with the DOT requirements. After compaction, determine the laboratory air voids of each specimen. Stability and flow shall be determined for the Marshall-compacted specimens, in accordance with ASTM D6927.

3.9.3.7 In-Place Density

Conduct any necessary testing to ensure the specified density is achieved. A nuclear gauge may be used to monitor pavement density in accordance with ASTM D2950/D2950M.

3.9.3.8 Grade and Smoothness

Conduct the necessary checks to ensure the grade and smoothness requirements are \mbox{met} .

3.9.3.9 Additional Testing

Any additional testing, which the Contractor deems necessary to control the process, may be performed at the Contractor's option.

3.9.3.10 QC Monitoring

Submit all QC test results to the Client on a daily basis as the tests are performed. The Client reserves the right to monitor any of the Contractor's quality control testing and to perform duplicate testing as a check to the Contractor's quality control testing.

3.9.4 Sampling

When directed by the Client, sample and test any material which appears inconsistent with similar material being produced, unless such material is voluntarily removed and replaced or deficiencies corrected by the Contractor. All sampling shall be in accordance with standard procedures specified.

3.9.5 Control Charts

For process control, establish and maintain linear control charts on both individual samples and the running average of last four samples for the parameters listed in Table 8, as a minimum. These control charts shall be posted as directed by the Client and kept current at all times. The control charts shall identify the project number, the test parameter being

plotted, the individual sample numbers, the Action and Suspension Limits listed in Table 8 applicable to the test parameter being plotted, and the Contractor's test results. Target values from the JMF shall also be shown on the control charts as indicators of central tendency for the cumulative percent passing, asphalt content, and laboratory air voids parameters. When the test results exceed either applicable Action Limit, take immediate steps to bring the process back in control. When the test results exceed either applicable Suspension Limit, halt production until the problem is solved. Use the control charts as part of the process control system for identifying trends so that potential problems can be corrected before they occur. Make decisions concerning mix modifications based on analysis of the results provided in the control charts. The Quality Control Plan shall indicate the appropriate action to be taken to bring the process into control when certain parameters exceed their Action Limits.

Table 8. Action and Suspension : Individual and Run				otted on
	Individual Samples		Running Average of Last Four Samples	
Parameter to be Plotted	Action Limit	Suspension Limit	Action Limit	Suspension Limit
No. 4 sieve, Cumulative percent passing, deviation for JMF target; plus or minus values	6	8	4	5
No. 30 sieve, Cumulative percent passing, deviation for JMF target; plus or minus values	4	6	3	4
No. 200 sieve, Cumulative percent passing, deviation for JMF target; plus or minus values	1.4	2.0	1.1	1.5
Stability, pounds (minimum) (NA for Su	ıperpave)			
75 Blow JMF	1800	1700	1900	1800
50 Blow JMF	1000	900	1100	1000
Flow, 0.01 inch (NA for Superpave)				
75 Blow JMF	8 min.	7 min.	9 min.	8 min.
	16 max.	17 max.	15 max.	16 max.
50 Blow JMF	8 min.	7 min.	9 min.	8 min.
	18 max.	19 max.	17 max.	18 max.
Asphalt content, percent deviation from JMF target; plus or minus value	0.4	0.5	0.2	0.3
Laboratory Air Voids, percent deviation from JMF target value	No specific action and suspension limits set since this parameter is used to determine percent payment			

Table 8. Action and Suspension Limits for the Parameters to be Plotted on Individual and Running Average Control Charts				
	Individual Samples		Running Average of Last Four Samples	
Parameter to be Plotted	Action Limit	Suspension Limit	Action Limit	Suspension Limit
In-place Mat Density, percent of TMD	No specific action and suspension limits set since this parameter is used to determine percent payment			
In-place Joint Density, percent of TMD	No specific action and suspension limits set since this parameter is used to determine percent payment			

3.10 MATERIAL ACCEPTANCE

Testing for acceptability of work will be performed by an independent laboratory hired by the Contractor. Forward test results and payment calculations daily to the Client. Acceptance of the plant produced mix and in-place requirements will be on a lot to lot basis. A standard lot for all requirements will be equal to 8 hours of production. Where appropriate, adjustment in payment for individual lots of hot-mix asphalt will be made based on in-place density, laboratory air voids, grade and smoothness in accordance with the following paragraphs. Grade and surface smoothness determinations will be made on the lot as a whole. Exceptions or adjustments to this will be made in situations where the mix within one lot is placed as part of both the intermediate and surface courses, thus grade and smoothness measurements for the entire lot cannot be made. In order to evaluate laboratory air voids and in-place (field) density, each lot will be divided into four equal sublots.

3.10.1 Sublot Sampling

One random mixture sample for determining laboratory air voids, theoretical maximum density, and for any additional testing the Client desires, will be taken from a loaded truck delivering mixture to each sublot, or other appropriate location for each sublot. All samples will be selected randomly, using commonly recognized methods of assuring randomness conforming to ASTM D3665 and employing tables of random numbers or computer programs. Laboratory air voids will be determined from three laboratory compacted specimens of each sublot sample in accordance with ASTM D6926. The specimens will be compacted within 2 hours of the time the mixture was loaded into trucks at the asphalt plant. Samples will not be reheated prior to compaction and insulated containers will be used as necessary to maintain the temperature.

3.10.2 Additional Sampling and Testing

The Client reserves the right to direct additional samples and tests for any area which appears to deviate from the specification requirements. The cost of any additional testing will be paid for by the Client. Testing in these areas will be in addition to the lot testing, and the requirements for these areas will be the same as those for a lot.

3.10.3 Grade

The final wearing surface of pavement shall conform to the elevations and

cross sections shown and shall vary not more than 0.05 foot from the plan grade established and approved at site of work. Finished surfaces at juncture with other pavements shall coincide with finished surfaces of abutting pavements. Deviation from the plan elevation will not be permitted in areas of pavements where closer conformance with planned elevation is required for the proper functioning of drainage and other appurtenant structures involved. The grade will be determined by running lines of levels at intervals of 25 feet, or less, longitudinally and transversely, to determine the elevation of the completed pavement surface. Within 5 working days, after the completion of a particular lot incorporating the final wearing surface, test the final wearing surface of the pavement for conformance with the specified plan grade. Diamond grinding may be used to remove high spots to meet grade requirements. Skin patching for correcting low areas or planing or milling for correcting high areas will not be permitted.

3.10.4 Surface Smoothness

Use one of the following methods to test and evaluate surface smoothness of the pavement. Perform all testing in the presence of the Client. Keep detailed notes of the results of the testing and furnish a copy to the Client immediately after each day's testing. Use the profilograph method for all longitudinal testing, except where the runs would be less than 200 feet in length and the ends where the straightedge will be used. Where drawings show required deviations from a plane surface (crowns, drainage inlets, etc.), the surface shall be finished to meet the approval of the Client.

3.10.4.1 Smoothness Requirements

3.10.4.1.1 Straightedge Testing

The finished surfaces of the pavements shall have no abrupt change of 1/4 inch or more, and all pavements shall be within the tolerances of 1/4 inch in both the longitudinal and transverse directions, when tested with an approved 12 feet straightedge.

3.10.4.1.2 Profilograph Testing

The finished surfaces of the pavements shall have no abrupt change of 1/8 inch or more, and each 0.1 mile segment of each pavement lot shall have a Profile Index not greater than 9 inches/mile when tested with an approved California-type profilograph. If the extent of the pavement in either direction is less than 200 feet, that direction shall be tested by the straightedge method and shall meet requirements specified above.

3.10.4.2 Testing Method

After the final rolling, but not later than 24 hours after placement, test the surface of the pavement in each entire lot in such a manner as to reveal all surface irregularities exceeding the tolerances specified above. Separate testing of individual sublots is not required. If any pavement areas are ground, these areas shall be retested immediately after grinding. Test each lot of the pavement in both a longitudinal and a transverse direction on parallel lines. Set the transverse lines 15 feet or less apart, as directed. The longitudinal lines shall be at the centerline of each paving lane for lanes less than 20 feet wide and at the third points for lanes 20 feet or wider. Also test other areas having obvious deviations. Longitudinal testing lines shall be continuous across

all joints.

3.10.4.2.1 Straightedge Testing

Hold the straightedge in contact with the surface and move it ahead one-half the length of the straightedge for each successive measurement. Determine the amount of surface irregularity by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points.

3.10.4.2.2 Profilograph Testing

Perform profilograph testing using approved equipment and procedures described in CTM 526. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must-grind" bumps and the Profile Index for each 0.1 mile segment of each pavement lot. Grade breaks on parking lots shall be accommodated by breaking the profile segment into shorter sections and repositioning the blanking band on each segment. The "blanking band" shall be 0.2 inches wide and the "bump template" shall span 1 inch with an offset of 0.3 inch. Compute the Profile Index for each pass of the profilograph in each 0.1 mile segment. The Profile Index for each segment shall be the average of the Profile Indices for each pass in each segment. The profilograph shall be operated by a DOT approved operator. Furnish a copy of the reduced tapes to the Client at the end of each day's testing.

-- End of Section --